A comparison of the thermal and hydraulic performances between miniature pin fin heat sink and microchannel heat sink with zigzag ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

Weerapun Duangthongsuk, Somchai Wongwises

ABSTRACT

In this study, a comparison of the convective heat transfer, pressure drop, and performance index characteristics of heat sinks with a miniature circular pin-fin inline arrangement (MCFHS) and a zigzag flow channel with single cross-cut structures (CCZ-HS) is presented. SiO2-water nanofluids with different particle concentrations are used as the coolant. The effects of the heat sink type, particle concentration and fluid flow rate on the thermal and hydraulic performances are evaluated. The testing conditions are performed at the wall heat fluxes of 10 to 60 kW/m2 and at a mass flow rate ranging from 0.18 to 0.6 kg/s. The dimension of heat sinks is equally designed at 28 × 33 mm. The heat transfer area of MCFHS and of CCZ-HS is 1430 and 1238 mm2, respectively. Similarly, the hydraulic diameter of the flow channel of MCFHS and of CCZ-HS is 1.2 and 1.0 mm, respectively. The measured data indicate that the cooling performances of CCZ-HS are about 24–55% greater than that of MCFHS. The effects of the channel diameter and single cross-cut of the flow channel are more dominant than the effects of the fin structure and heat transfer area. More... »

PAGES

3265-3274

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-018-2370-y

DOI

http://dx.doi.org/10.1007/s00231-018-2370-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103791522


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Department of Mechanical Engineering, Faculty of Engineering, Southeast Asia University, Bangkok, Thailand", 
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duangthongsuk", 
        "givenName": "Weerapun", 
        "id": "sg:person.014335372443.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014335372443.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, Bangkok, Thailand", 
            "The Academy of Science, The Royal Institute of Thailand, Sanam Suea Pa, Dusit, 10300, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2013.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006204321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457630304040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007645859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.01.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014813013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019059038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.1105.253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019070047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2016.01.114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020333441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01457630701686669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025385435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-009-0510-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028894195", 
          "https://doi.org/10.1007/s00231-009-0510-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-009-0510-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028894195", 
          "https://doi.org/10.1007/s00231-009-0510-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00231-009-0510-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028894195", 
          "https://doi.org/10.1007/s00231-009-0510-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030033749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031396285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2006.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034433008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2012.01.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035534373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2008.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035545922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916159808946559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2009.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039403074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043063881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10407780902776405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043512453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1044642002", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b97678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044642002", 
          "https://doi.org/10.1007/b97678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b97678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044642002", 
          "https://doi.org/10.1007/b97678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2015.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045915506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046380967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2010.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053594140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/i160003a005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055523914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/edl.1981.25367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061258769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14716/ijtech.v4i2.126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067352312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2017.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085199382"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "In this study, a comparison of the convective heat transfer, pressure drop, and performance index characteristics of heat sinks with a miniature circular pin-fin inline arrangement (MCFHS) and a zigzag flow channel with single cross-cut structures (CCZ-HS) is presented. SiO2-water nanofluids with different particle concentrations are used as the coolant. The effects of the heat sink type, particle concentration and fluid flow rate on the thermal and hydraulic performances are evaluated. The testing conditions are performed at the wall heat fluxes of 10 to 60 kW/m2 and at a mass flow rate ranging from 0.18 to 0.6 kg/s. The dimension of heat sinks is equally designed at 28 \u00d7 33 mm. The heat transfer area of MCFHS and of CCZ-HS is 1430 and 1238 mm2, respectively. Similarly, the hydraulic diameter of the flow channel of MCFHS and of CCZ-HS is 1.2 and 1.0 mm, respectively. The measured data indicate that the cooling performances of CCZ-HS are about 24\u201355% greater than that of MCFHS. The effects of the channel diameter and single cross-cut of the flow channel are more dominant than the effects of the fin structure and heat transfer area.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-018-2370-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "name": "A comparison of the thermal and hydraulic performances between miniature pin fin heat sink and microchannel heat sink with zigzag flow channel together with using nanofluids", 
    "pagination": "3265-3274", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b345e87cd86bd4b4b1d1626dd1fad7e3498b7bbdd4aef8473b321b6afb80d92c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-018-2370-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103791522"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-018-2370-y", 
      "https://app.dimensions.ai/details/publication/pub.1103791522"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000563.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00231-018-2370-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2370-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2370-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2370-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-018-2370-y'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-018-2370-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N5d7a383f3f3645d2a6d38c3e13900b39
4 schema:citation sg:pub.10.1007/b97678
5 sg:pub.10.1007/s00231-009-0510-0
6 https://app.dimensions.ai/details/publication/pub.1044642002
7 https://doi.org/10.1016/j.applthermaleng.2006.02.036
8 https://doi.org/10.1016/j.applthermaleng.2009.07.003
9 https://doi.org/10.1016/j.applthermaleng.2013.04.008
10 https://doi.org/10.1016/j.applthermaleng.2016.01.114
11 https://doi.org/10.1016/j.applthermaleng.2016.01.140
12 https://doi.org/10.1016/j.expthermflusci.2012.01.033
13 https://doi.org/10.1016/j.expthermflusci.2015.02.008
14 https://doi.org/10.1016/j.expthermflusci.2015.07.019
15 https://doi.org/10.1016/j.expthermflusci.2017.04.013
16 https://doi.org/10.1016/j.icheatmasstransfer.2010.09.007
17 https://doi.org/10.1016/j.ijheatfluidflow.2008.01.005
18 https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001
19 https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.008
20 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.038
21 https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.004
22 https://doi.org/10.1021/i160003a005
23 https://doi.org/10.1080/01457630304040
24 https://doi.org/10.1080/01457630701686669
25 https://doi.org/10.1080/08916159808946559
26 https://doi.org/10.1080/10407780902776405
27 https://doi.org/10.1109/edl.1981.25367
28 https://doi.org/10.14716/ijtech.v4i2.126
29 https://doi.org/10.4028/www.scientific.net/amr.1105.253
30 schema:datePublished 2018-11
31 schema:datePublishedReg 2018-11-01
32 schema:description In this study, a comparison of the convective heat transfer, pressure drop, and performance index characteristics of heat sinks with a miniature circular pin-fin inline arrangement (MCFHS) and a zigzag flow channel with single cross-cut structures (CCZ-HS) is presented. SiO2-water nanofluids with different particle concentrations are used as the coolant. The effects of the heat sink type, particle concentration and fluid flow rate on the thermal and hydraulic performances are evaluated. The testing conditions are performed at the wall heat fluxes of 10 to 60 kW/m2 and at a mass flow rate ranging from 0.18 to 0.6 kg/s. The dimension of heat sinks is equally designed at 28 × 33 mm. The heat transfer area of MCFHS and of CCZ-HS is 1430 and 1238 mm2, respectively. Similarly, the hydraulic diameter of the flow channel of MCFHS and of CCZ-HS is 1.2 and 1.0 mm, respectively. The measured data indicate that the cooling performances of CCZ-HS are about 24–55% greater than that of MCFHS. The effects of the channel diameter and single cross-cut of the flow channel are more dominant than the effects of the fin structure and heat transfer area.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf Nd063e91017d847f9a7a23e0d713f052f
37 Ndeffce02b334412b9ad595ab569e9987
38 sg:journal.1356910
39 schema:name A comparison of the thermal and hydraulic performances between miniature pin fin heat sink and microchannel heat sink with zigzag flow channel together with using nanofluids
40 schema:pagination 3265-3274
41 schema:productId N9e9fe22639a44dec97f9abc050663a6f
42 Na53911d700f64867855451ddaa8d40ae
43 Ncc252250e0194ad292fb20134824b1ef
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103791522
45 https://doi.org/10.1007/s00231-018-2370-y
46 schema:sdDatePublished 2019-04-10T23:33
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nec04d5452720463785336d380d121acb
49 schema:url https://link.springer.com/10.1007%2Fs00231-018-2370-y
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N29ef440d5aa14662be8a3976f6131dae rdf:first sg:person.012267021412.00
54 rdf:rest rdf:nil
55 N5d7a383f3f3645d2a6d38c3e13900b39 rdf:first sg:person.014335372443.82
56 rdf:rest N29ef440d5aa14662be8a3976f6131dae
57 N9e9fe22639a44dec97f9abc050663a6f schema:name dimensions_id
58 schema:value pub.1103791522
59 rdf:type schema:PropertyValue
60 Na53911d700f64867855451ddaa8d40ae schema:name doi
61 schema:value 10.1007/s00231-018-2370-y
62 rdf:type schema:PropertyValue
63 Ncc252250e0194ad292fb20134824b1ef schema:name readcube_id
64 schema:value b345e87cd86bd4b4b1d1626dd1fad7e3498b7bbdd4aef8473b321b6afb80d92c
65 rdf:type schema:PropertyValue
66 Nd063e91017d847f9a7a23e0d713f052f schema:issueNumber 11
67 rdf:type schema:PublicationIssue
68 Ndeffce02b334412b9ad595ab569e9987 schema:volumeNumber 54
69 rdf:type schema:PublicationVolume
70 Nec04d5452720463785336d380d121acb schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
76 schema:name Interdisciplinary Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1356910 schema:issn 0947-7411
79 1432-1181
80 schema:name Heat and Mass Transfer
81 rdf:type schema:Periodical
82 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
83 schema:familyName Wongwises
84 schema:givenName Somchai
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
86 rdf:type schema:Person
87 sg:person.014335372443.82 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
88 schema:familyName Duangthongsuk
89 schema:givenName Weerapun
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014335372443.82
91 rdf:type schema:Person
92 sg:pub.10.1007/b97678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044642002
93 https://doi.org/10.1007/b97678
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00231-009-0510-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028894195
96 https://doi.org/10.1007/s00231-009-0510-0
97 rdf:type schema:CreativeWork
98 https://app.dimensions.ai/details/publication/pub.1044642002 schema:CreativeWork
99 https://doi.org/10.1016/j.applthermaleng.2006.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034433008
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.applthermaleng.2009.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039403074
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.applthermaleng.2013.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006204321
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.applthermaleng.2016.01.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020333441
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.applthermaleng.2016.01.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014813013
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.expthermflusci.2012.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035534373
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.expthermflusci.2015.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045915506
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.expthermflusci.2015.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030033749
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.expthermflusci.2017.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085199382
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.icheatmasstransfer.2010.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053594140
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijheatfluidflow.2008.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545922
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031396285
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019059038
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043063881
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046380967
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/i160003a005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055523914
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/01457630304040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007645859
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/01457630701686669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025385435
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/08916159808946559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362381
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/10407780902776405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043512453
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/edl.1981.25367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061258769
140 rdf:type schema:CreativeWork
141 https://doi.org/10.14716/ijtech.v4i2.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067352312
142 rdf:type schema:CreativeWork
143 https://doi.org/10.4028/www.scientific.net/amr.1105.253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019070047
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
146 schema:name Department of Mechanical Engineering, Faculty of Engineering, Southeast Asia University, Bangkok, Thailand
147 Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, Thailand
148 The Academy of Science, The Royal Institute of Thailand, Sanam Suea Pa, Dusit, 10300, Bangkok, Thailand
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...