Prediction of heat transfer coefficients and friction factors for evaporation of R-134a flowing inside corrugated tubes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04

AUTHORS

S. Laohalertdecha, K. Aroonrat, A. S. Dalkilic, O. Mahian, S. Kaewnai, S. Wongwises

ABSTRACT

In this study, experimental and simulation studies of the evaporation heat transfer coefficient and pressure drop of R-134a flowing through corrugated tubes are conducted. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2.0 m in length. A smooth tube and corrugated tubes with inner diameters of 8.7 mm are used as the inner tube. The outer tube is made from a smooth copper tube with an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The results show that the maximum heat transfer coefficient and pressure drop obtained from the corrugated tube are up to 22 and 19 % higher than those obtained from the smooth tube, respectively. In addition, the average difference of the heat transfer coefficient and pressure drop between the simulation model and experimental data are about 10 and 15 %, respectively. More... »

PAGES

469-482

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-013-1252-6

DOI

http://dx.doi.org/10.1007/s00231-013-1252-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037949251


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laohalertdecha", 
        "givenName": "S.", 
        "id": "sg:person.014142557415.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142557415.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aroonrat", 
        "givenName": "K.", 
        "id": "sg:person.012234461665.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234461665.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Y\u0131ld\u0131z Technical University", 
          "id": "https://www.grid.ac/institutes/grid.38575.3c", 
          "name": [
            "Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, Yildiz, Besiktas, 34349, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dalkilic", 
        "givenName": "A. S.", 
        "id": "sg:person.010156117345.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010156117345.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Islamic Azad University, Mashhad", 
          "id": "https://www.grid.ac/institutes/grid.411768.d", 
          "name": [
            "Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahian", 
        "givenName": "O.", 
        "id": "sg:person.011516505301.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaewnai", 
        "givenName": "S.", 
        "id": "sg:person.011127730761.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127730761.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "S.", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0140-7007(02)00077-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001840213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-7007(02)00077-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001840213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003652358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(02)00156-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015573693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2005.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017453326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1933(04)00052-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024246821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025667286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025667286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(95)00059-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029193182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0894-1777(01)00047-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030555225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0894-1777(94)00110-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031879416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0894-1777(01)00112-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033613791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2010.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038697052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2011.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039081460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041530880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041530880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047528396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(00)00126-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048536813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051403919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051403919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0735-1933(02)00321-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051752649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3687113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062140040"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-04", 
    "datePublishedReg": "2014-04-01", 
    "description": "In this study, experimental and simulation studies of the evaporation heat transfer coefficient and pressure drop of R-134a flowing through corrugated tubes are conducted. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2.0 m in length. A smooth tube and corrugated tubes with inner diameters of 8.7 mm are used as the inner tube. The outer tube is made from a smooth copper tube with an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The results show that the maximum heat transfer coefficient and pressure drop obtained from the corrugated tube are up to 22 and 19 % higher than those obtained from the smooth tube, respectively. In addition, the average difference of the heat transfer coefficient and pressure drop between the simulation model and experimental data are about 10 and 15 %, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-013-1252-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Prediction of heat transfer coefficients and friction factors for evaporation of R-134a flowing inside corrugated tubes", 
    "pagination": "469-482", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4c70311c6017b3c654206be0113b42de8f92ada766d1460a5ff2b160cc8b55b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-013-1252-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037949251"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-013-1252-6", 
      "https://app.dimensions.ai/details/publication/pub.1037949251"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00231-013-1252-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-013-1252-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-013-1252-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-013-1252-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-013-1252-6'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-013-1252-6 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nda1700ee8fa54c5fb8f904fe8906ee6a
4 schema:citation https://doi.org/10.1016/0894-1777(94)00110-t
5 https://doi.org/10.1016/0894-1777(95)00059-3
6 https://doi.org/10.1016/j.applthermaleng.2005.07.026
7 https://doi.org/10.1016/j.icheatmasstransfer.2011.08.014
8 https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.003
9 https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.004
10 https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.005
11 https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.037
12 https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.034
13 https://doi.org/10.1016/j.ijrefrig.2010.07.012
14 https://doi.org/10.1016/s0017-9310(00)00126-5
15 https://doi.org/10.1016/s0017-9310(02)00156-4
16 https://doi.org/10.1016/s0140-7007(02)00077-4
17 https://doi.org/10.1016/s0735-1933(02)00321-4
18 https://doi.org/10.1016/s0735-1933(04)00052-1
19 https://doi.org/10.1016/s0894-1777(01)00047-4
20 https://doi.org/10.1016/s0894-1777(01)00112-1
21 https://doi.org/10.1115/1.3687113
22 schema:datePublished 2014-04
23 schema:datePublishedReg 2014-04-01
24 schema:description In this study, experimental and simulation studies of the evaporation heat transfer coefficient and pressure drop of R-134a flowing through corrugated tubes are conducted. The test section is a horizontal counter-flow concentric tube-in-tube heat exchanger 2.0 m in length. A smooth tube and corrugated tubes with inner diameters of 8.7 mm are used as the inner tube. The outer tube is made from a smooth copper tube with an inner diameter of 21.2 mm. The corrugation pitches used in this study are 5.08, 6.35, and 8.46 mm. Similarly, the corrugation depths are 1, 1.25, and 1.5 mm, respectively. The results show that the maximum heat transfer coefficient and pressure drop obtained from the corrugated tube are up to 22 and 19 % higher than those obtained from the smooth tube, respectively. In addition, the average difference of the heat transfer coefficient and pressure drop between the simulation model and experimental data are about 10 and 15 %, respectively.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Na14a5f9c40fe4127b1a3f54d8697fca8
29 Ne98f7ef21aae4d10b280225db204d95f
30 sg:journal.1356910
31 schema:name Prediction of heat transfer coefficients and friction factors for evaporation of R-134a flowing inside corrugated tubes
32 schema:pagination 469-482
33 schema:productId N083415b6be8f4ded911fe07d12dd6e77
34 N531d0a54ef10499a841c0b7368496909
35 Nba4ce23662534c579fd8b0bb2d953dab
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037949251
37 https://doi.org/10.1007/s00231-013-1252-6
38 schema:sdDatePublished 2019-04-10T17:32
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Ndacc569f39934c6595805deffd3a94df
41 schema:url http://link.springer.com/10.1007%2Fs00231-013-1252-6
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N083415b6be8f4ded911fe07d12dd6e77 schema:name readcube_id
46 schema:value b4c70311c6017b3c654206be0113b42de8f92ada766d1460a5ff2b160cc8b55b
47 rdf:type schema:PropertyValue
48 N202e79f755254426b7dc3fad1b2d1259 rdf:first sg:person.011516505301.04
49 rdf:rest Ne830ec35d5fd4dd3a92cb1573603408a
50 N373c2489304146b1ad3111a0a7dd9555 rdf:first sg:person.010156117345.67
51 rdf:rest N202e79f755254426b7dc3fad1b2d1259
52 N531d0a54ef10499a841c0b7368496909 schema:name doi
53 schema:value 10.1007/s00231-013-1252-6
54 rdf:type schema:PropertyValue
55 N99078eba52c04d3198b0fcd00136704f rdf:first sg:person.012267021412.00
56 rdf:rest rdf:nil
57 Na14a5f9c40fe4127b1a3f54d8697fca8 schema:volumeNumber 50
58 rdf:type schema:PublicationVolume
59 Nba4ce23662534c579fd8b0bb2d953dab schema:name dimensions_id
60 schema:value pub.1037949251
61 rdf:type schema:PropertyValue
62 Nd4b1d14fe4bd4b8f9135dbd8449927d0 rdf:first sg:person.012234461665.27
63 rdf:rest N373c2489304146b1ad3111a0a7dd9555
64 Nda1700ee8fa54c5fb8f904fe8906ee6a rdf:first sg:person.014142557415.22
65 rdf:rest Nd4b1d14fe4bd4b8f9135dbd8449927d0
66 Ndacc569f39934c6595805deffd3a94df schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ne830ec35d5fd4dd3a92cb1573603408a rdf:first sg:person.011127730761.49
69 rdf:rest N99078eba52c04d3198b0fcd00136704f
70 Ne98f7ef21aae4d10b280225db204d95f schema:issueNumber 4
71 rdf:type schema:PublicationIssue
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
76 schema:name Interdisciplinary Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1356910 schema:issn 0947-7411
79 1432-1181
80 schema:name Heat and Mass Transfer
81 rdf:type schema:Periodical
82 sg:person.010156117345.67 schema:affiliation https://www.grid.ac/institutes/grid.38575.3c
83 schema:familyName Dalkilic
84 schema:givenName A. S.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010156117345.67
86 rdf:type schema:Person
87 sg:person.011127730761.49 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
88 schema:familyName Kaewnai
89 schema:givenName S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011127730761.49
91 rdf:type schema:Person
92 sg:person.011516505301.04 schema:affiliation https://www.grid.ac/institutes/grid.411768.d
93 schema:familyName Mahian
94 schema:givenName O.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516505301.04
96 rdf:type schema:Person
97 sg:person.012234461665.27 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
98 schema:familyName Aroonrat
99 schema:givenName K.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012234461665.27
101 rdf:type schema:Person
102 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
103 schema:familyName Wongwises
104 schema:givenName S.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
106 rdf:type schema:Person
107 sg:person.014142557415.22 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
108 schema:familyName Laohalertdecha
109 schema:givenName S.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014142557415.22
111 rdf:type schema:Person
112 https://doi.org/10.1016/0894-1777(94)00110-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1031879416
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0894-1777(95)00059-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029193182
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.applthermaleng.2005.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017453326
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.icheatmasstransfer.2011.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039081460
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041530880
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025667286
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051403919
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047528396
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003652358
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ijrefrig.2010.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038697052
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0017-9310(00)00126-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048536813
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0017-9310(02)00156-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015573693
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0140-7007(02)00077-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001840213
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0735-1933(02)00321-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051752649
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0735-1933(04)00052-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024246821
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0894-1777(01)00047-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030555225
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0894-1777(01)00112-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033613791
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1115/1.3687113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062140040
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.38575.3c schema:alternateName Yıldız Technical University
149 schema:name Heat and Thermodynamics Division, Department of Mechanical Engineering, Yildiz Technical University, Yildiz, Besiktas, 34349, Istanbul, Turkey
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.411768.d schema:alternateName Islamic Azad University, Mashhad
152 schema:name Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
155 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, 10140, Bangkok, Thailand
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...