Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07-07

AUTHORS

Hana Bellerová, Ampere A. Tseng, Michal Pohanka, Miroslav Raudensky

ABSTRACT

The transient temperatures of a metal testing plate during spray cooling using alumina/water nanofluids were measured. The heat transfer coefficient (HTC) was calculated by an inverse heat-conduction technique using the measured temperatures. The results show a decrease of approximately 20 % of the HTC of spray cooling with the nanoparticle suspension changing from 0 to 16.45 %. The nature and the reason of the HTC deduction were investigated and the HTC correlations with the mass fluxes and nanoparticle fraction were specifically reported. More... »

PAGES

1971-1983

References to SciGraph publications

  • 2002-12-17. Natural convection of nano-fluids in HEAT AND MASS TRANSFER
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00231-012-1037-3

    DOI

    http://dx.doi.org/10.1007/s00231-012-1037-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020488163


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, ECG 301, 85287-6106, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic", 
                "School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, ECG 301, 85287-6106, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bellerov\u00e1", 
            "givenName": "Hana", 
            "id": "sg:person.011441114253.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441114253.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, ECG 301, 85287-6106, Tempe, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, ECG 301, 85287-6106, Tempe, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tseng", 
            "givenName": "Ampere A.", 
            "id": "sg:person.01134163176.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134163176.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.4994.0", 
              "name": [
                "Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pohanka", 
            "givenName": "Michal", 
            "id": "sg:person.012236474653.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012236474653.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic", 
              "id": "http://www.grid.ac/institutes/grid.4994.0", 
              "name": [
                "Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Raudensky", 
            "givenName": "Miroslav", 
            "id": "sg:person.010425265033.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425265033.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00231-002-0382-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011867779", 
              "https://doi.org/10.1007/s00231-002-0382-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-07-07", 
        "datePublishedReg": "2012-07-07", 
        "description": "The transient temperatures of a metal testing plate during spray cooling using alumina/water nanofluids were measured. The heat transfer coefficient (HTC) was calculated by an inverse heat-conduction technique using the measured temperatures. The results show a decrease of approximately 20\u00a0% of the HTC of spray cooling with the nanoparticle suspension changing from 0 to 16.45\u00a0%. The nature and the reason of the HTC deduction were investigated and the HTC correlations with the mass fluxes and nanoparticle fraction were specifically reported.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00231-012-1037-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1356910", 
            "issn": [
              "0947-7411", 
              "1432-1181"
            ], 
            "name": "Heat and Mass Transfer", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "keywords": [
          "heat transfer coefficient", 
          "alumina/water nanofluid", 
          "spray cooling", 
          "water nanofluid", 
          "full cone nozzle", 
          "HTC correlations", 
          "heat transfer", 
          "transient temperature", 
          "transfer coefficient", 
          "mass flux", 
          "cone nozzles", 
          "nanoparticle fraction", 
          "nanofluids", 
          "nanoparticle suspensions", 
          "testing plate", 
          "cooling", 
          "temperature", 
          "nozzle", 
          "spray", 
          "plate", 
          "flux", 
          "coefficient", 
          "suspension", 
          "transfer", 
          "technique", 
          "fraction", 
          "results", 
          "decrease", 
          "nature", 
          "reasons", 
          "deduction", 
          "correlation", 
          "metal testing plate", 
          "inverse heat-conduction technique", 
          "heat-conduction technique", 
          "HTC of spray", 
          "HTC deduction"
        ], 
        "name": "Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles", 
        "pagination": "1971-1983", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020488163"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00231-012-1037-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00231-012-1037-3", 
          "https://app.dimensions.ai/details/publication/pub.1020488163"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_561.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00231-012-1037-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-012-1037-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-012-1037-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-012-1037-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-012-1037-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      22 PREDICATES      63 URIs      54 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00231-012-1037-3 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Nb99da32244c74909895ef355ce6dc67f
    4 schema:citation sg:pub.10.1007/s00231-002-0382-z
    5 schema:datePublished 2012-07-07
    6 schema:datePublishedReg 2012-07-07
    7 schema:description The transient temperatures of a metal testing plate during spray cooling using alumina/water nanofluids were measured. The heat transfer coefficient (HTC) was calculated by an inverse heat-conduction technique using the measured temperatures. The results show a decrease of approximately 20 % of the HTC of spray cooling with the nanoparticle suspension changing from 0 to 16.45 %. The nature and the reason of the HTC deduction were investigated and the HTC correlations with the mass fluxes and nanoparticle fraction were specifically reported.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Naa8ff939e0464d019d5351b25623e3ce
    12 Nc29ef10a500e4918a422f1b6a6e95c18
    13 sg:journal.1356910
    14 schema:keywords HTC correlations
    15 HTC deduction
    16 HTC of spray
    17 alumina/water nanofluid
    18 coefficient
    19 cone nozzles
    20 cooling
    21 correlation
    22 decrease
    23 deduction
    24 flux
    25 fraction
    26 full cone nozzle
    27 heat transfer
    28 heat transfer coefficient
    29 heat-conduction technique
    30 inverse heat-conduction technique
    31 mass flux
    32 metal testing plate
    33 nanofluids
    34 nanoparticle fraction
    35 nanoparticle suspensions
    36 nature
    37 nozzle
    38 plate
    39 reasons
    40 results
    41 spray
    42 spray cooling
    43 suspension
    44 technique
    45 temperature
    46 testing plate
    47 transfer
    48 transfer coefficient
    49 transient temperature
    50 water nanofluid
    51 schema:name Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles
    52 schema:pagination 1971-1983
    53 schema:productId N01098ae04502499392f2c3f344d7d2d0
    54 Nd335aa73ef04418180563e1d1f29058d
    55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020488163
    56 https://doi.org/10.1007/s00231-012-1037-3
    57 schema:sdDatePublished 2021-12-01T19:25
    58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    59 schema:sdPublisher N157d79828a1f4ca78317c911c5bf6240
    60 schema:url https://doi.org/10.1007/s00231-012-1037-3
    61 sgo:license sg:explorer/license/
    62 sgo:sdDataset articles
    63 rdf:type schema:ScholarlyArticle
    64 N01098ae04502499392f2c3f344d7d2d0 schema:name dimensions_id
    65 schema:value pub.1020488163
    66 rdf:type schema:PropertyValue
    67 N157d79828a1f4ca78317c911c5bf6240 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 N2dfda41bfe194d29b28a7e9461b4b7d9 rdf:first sg:person.01134163176.52
    70 rdf:rest N7de496ff08864c618de0bb62a2de6a34
    71 N7de496ff08864c618de0bb62a2de6a34 rdf:first sg:person.012236474653.07
    72 rdf:rest Nc7f128ff302849229fdd16f8203a6b99
    73 Naa8ff939e0464d019d5351b25623e3ce schema:volumeNumber 48
    74 rdf:type schema:PublicationVolume
    75 Nb99da32244c74909895ef355ce6dc67f rdf:first sg:person.011441114253.18
    76 rdf:rest N2dfda41bfe194d29b28a7e9461b4b7d9
    77 Nc29ef10a500e4918a422f1b6a6e95c18 schema:issueNumber 11
    78 rdf:type schema:PublicationIssue
    79 Nc7f128ff302849229fdd16f8203a6b99 rdf:first sg:person.010425265033.01
    80 rdf:rest rdf:nil
    81 Nd335aa73ef04418180563e1d1f29058d schema:name doi
    82 schema:value 10.1007/s00231-012-1037-3
    83 rdf:type schema:PropertyValue
    84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Engineering
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Interdisciplinary Engineering
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1356910 schema:issn 0947-7411
    91 1432-1181
    92 schema:name Heat and Mass Transfer
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.010425265033.01 schema:affiliation grid-institutes:grid.4994.0
    96 schema:familyName Raudensky
    97 schema:givenName Miroslav
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010425265033.01
    99 rdf:type schema:Person
    100 sg:person.01134163176.52 schema:affiliation grid-institutes:grid.215654.1
    101 schema:familyName Tseng
    102 schema:givenName Ampere A.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134163176.52
    104 rdf:type schema:Person
    105 sg:person.011441114253.18 schema:affiliation grid-institutes:grid.215654.1
    106 schema:familyName Bellerová
    107 schema:givenName Hana
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011441114253.18
    109 rdf:type schema:Person
    110 sg:person.012236474653.07 schema:affiliation grid-institutes:grid.4994.0
    111 schema:familyName Pohanka
    112 schema:givenName Michal
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012236474653.07
    114 rdf:type schema:Person
    115 sg:pub.10.1007/s00231-002-0382-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1011867779
    116 https://doi.org/10.1007/s00231-002-0382-z
    117 rdf:type schema:CreativeWork
    118 grid-institutes:grid.215654.1 schema:alternateName School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, ECG 301, 85287-6106, Tempe, AZ, USA
    119 schema:name Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic
    120 School for Engineering of Matter, Transport, and Energy, Arizona State University, 501 E. Tyler Mall, ECG 301, 85287-6106, Tempe, AZ, USA
    121 rdf:type schema:Organization
    122 grid-institutes:grid.4994.0 schema:alternateName Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic
    123 schema:name Heat Transfer and Fluid Flow Laboratory, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69, Brno, Czech Republic
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...