Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-04

AUTHORS

S. Suresh, M. Chandrasekar, P. Selvakumar

ABSTRACT

An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and dimpled tube under laminar flow with constant heat flux is carried out with distilled water and CuO/water nanofluids. For this, CuO nanoparticles with an average size of 15.3 nm were synthesized by sol–gel method. The nanoparticles are then dispersed in distilled water to form stable suspension of CuO/water nanofluid containing 0.1, 0.2 and 0.3% volume concentration of nanoparticles. It is found that the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 6, 9.9 and 12.6%, respectively higher than those obtained with distilled water in plain tube. However, the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 3.4, 6.8 and 12%, respectively higher than those obtained with distilled water in dimpled tube. The friction factor of CuO/water nanofluid is also increased due to the inclusion of nanoparticles and found to increase with nanoparticle volume concentration. The experimental results show that there exists a difference in the enhancement levels of Nusselt numbers obtained with nanofluids in plain tube and dimpled tube. Hence it is proposed that the mechanism of heat transfer enhancement obtained with nanofluids is due to particle migration from the core of fluid flow to tube wall. More... »

PAGES

683-694

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-011-0917-2

DOI

http://dx.doi.org/10.1007/s00231-011-0917-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047250362


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Tiruchirappalli", 
          "id": "https://www.grid.ac/institutes/grid.419653.c", 
          "name": [
            "Department of Mechanical Engineering, National Institute of Technology, 620015, Tiruchirappalli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suresh", 
        "givenName": "S.", 
        "id": "sg:person.016161103217.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161103217.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mechanical Engineering, Anna University of Technology, 620024, Tiruchirappalli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chandrasekar", 
        "givenName": "M.", 
        "id": "sg:person.0670361432.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670361432.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Technology Tiruchirappalli", 
          "id": "https://www.grid.ac/institutes/grid.419653.c", 
          "name": [
            "Department of Mechanical Engineering, National Institute of Technology, 620015, Tiruchirappalli, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selvakumar", 
        "givenName": "P.", 
        "id": "sg:person.011646353417.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011646353417.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11051-009-9657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952917", 
          "https://doi.org/10.1007/s11051-009-9657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-009-9657-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952917", 
          "https://doi.org/10.1007/s11051-009-9657-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006224356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(99)00369-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009436639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012654515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2009.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012673165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013113168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.partic.2009.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013326538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2008.07.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013813307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021002700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024324521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2010.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024877903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027372315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028029997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.powtec.2007.11.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029497506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030390723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2010.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033126637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08916159808946559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(01)00170-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037518885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040806658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.icheatmasstransfer.2009.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044878949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045970186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050816282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051152128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051233788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-4311(00)00067-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052490190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.322107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057920251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1532008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062071683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2150834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062077311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2818775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062084673"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04", 
    "datePublishedReg": "2012-04-01", 
    "description": "An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and dimpled tube under laminar flow with constant heat flux is carried out with distilled water and CuO/water nanofluids. For this, CuO nanoparticles with an average size of 15.3 nm were synthesized by sol\u2013gel method. The nanoparticles are then dispersed in distilled water to form stable suspension of CuO/water nanofluid containing 0.1, 0.2 and 0.3% volume concentration of nanoparticles. It is found that the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 6, 9.9 and 12.6%, respectively higher than those obtained with distilled water in plain tube. However, the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 3.4, 6.8 and 12%, respectively higher than those obtained with distilled water in dimpled tube. The friction factor of CuO/water nanofluid is also increased due to the inclusion of nanoparticles and found to increase with nanoparticle volume concentration. The experimental results show that there exists a difference in the enhancement levels of Nusselt numbers obtained with nanofluids in plain tube and dimpled tube. Hence it is proposed that the mechanism of heat transfer enhancement obtained with nanofluids is due to particle migration from the core of fluid flow to tube wall.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-011-0917-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube", 
    "pagination": "683-694", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1161ba635553ae1e527c3d89513b92d54417de5cc3469fb0c38c74964d81bc9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-011-0917-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047250362"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-011-0917-2", 
      "https://app.dimensions.ai/details/publication/pub.1047250362"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00231-011-0917-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0917-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0917-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0917-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0917-2'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-011-0917-2 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N2f3bedd2d2684c2eb3f798c4e2fb357c
4 schema:citation sg:pub.10.1007/s11051-009-9657-3
5 https://doi.org/10.1016/j.expthermflusci.2010.12.008
6 https://doi.org/10.1016/j.icheatmasstransfer.2008.07.015
7 https://doi.org/10.1016/j.icheatmasstransfer.2009.02.011
8 https://doi.org/10.1016/j.icheatmasstransfer.2009.10.003
9 https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
10 https://doi.org/10.1016/j.ijheatfluidflow.2010.02.020
11 https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012
12 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038
13 https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
14 https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024
15 https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026
16 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063
17 https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032
18 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023
19 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025
20 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006
21 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.036
22 https://doi.org/10.1016/j.partic.2009.01.007
23 https://doi.org/10.1016/j.powtec.2007.11.014
24 https://doi.org/10.1016/j.rser.2009.10.004
25 https://doi.org/10.1016/s0017-9310(01)00170-3
26 https://doi.org/10.1016/s0017-9310(99)00369-5
27 https://doi.org/10.1016/s1359-4311(00)00067-3
28 https://doi.org/10.1063/1.322107
29 https://doi.org/10.1080/08916159808946559
30 https://doi.org/10.1115/1.1532008
31 https://doi.org/10.1115/1.2150834
32 https://doi.org/10.1115/1.2818775
33 schema:datePublished 2012-04
34 schema:datePublishedReg 2012-04-01
35 schema:description An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and dimpled tube under laminar flow with constant heat flux is carried out with distilled water and CuO/water nanofluids. For this, CuO nanoparticles with an average size of 15.3 nm were synthesized by sol–gel method. The nanoparticles are then dispersed in distilled water to form stable suspension of CuO/water nanofluid containing 0.1, 0.2 and 0.3% volume concentration of nanoparticles. It is found that the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 6, 9.9 and 12.6%, respectively higher than those obtained with distilled water in plain tube. However, the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 3.4, 6.8 and 12%, respectively higher than those obtained with distilled water in dimpled tube. The friction factor of CuO/water nanofluid is also increased due to the inclusion of nanoparticles and found to increase with nanoparticle volume concentration. The experimental results show that there exists a difference in the enhancement levels of Nusselt numbers obtained with nanofluids in plain tube and dimpled tube. Hence it is proposed that the mechanism of heat transfer enhancement obtained with nanofluids is due to particle migration from the core of fluid flow to tube wall.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N84a34b165a3e455fb6889d1a93629454
40 Nbc8f8fea534c471eb520937a5ab4be74
41 sg:journal.1356910
42 schema:name Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube
43 schema:pagination 683-694
44 schema:productId N799fe5c5ec7d48418cdf24b1ac496cd4
45 Nb9af5b6a93214e7fa8667ddc2821d94a
46 Nc03d2043ea0d485eb420bafcd011a011
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047250362
48 https://doi.org/10.1007/s00231-011-0917-2
49 schema:sdDatePublished 2019-04-10T23:25
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N7155e7b5f14c4c5d8079beba1d9a2bd8
52 schema:url http://link.springer.com/10.1007%2Fs00231-011-0917-2
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2f3bedd2d2684c2eb3f798c4e2fb357c rdf:first sg:person.016161103217.35
57 rdf:rest N698c4d57013b475e89452804e18c4593
58 N698c4d57013b475e89452804e18c4593 rdf:first sg:person.0670361432.91
59 rdf:rest Ne8090bab69e74c05812bffe501efb738
60 N7155e7b5f14c4c5d8079beba1d9a2bd8 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N799fe5c5ec7d48418cdf24b1ac496cd4 schema:name dimensions_id
63 schema:value pub.1047250362
64 rdf:type schema:PropertyValue
65 N84a34b165a3e455fb6889d1a93629454 schema:volumeNumber 48
66 rdf:type schema:PublicationVolume
67 Nb9af5b6a93214e7fa8667ddc2821d94a schema:name readcube_id
68 schema:value e1161ba635553ae1e527c3d89513b92d54417de5cc3469fb0c38c74964d81bc9
69 rdf:type schema:PropertyValue
70 Nbc8f8fea534c471eb520937a5ab4be74 schema:issueNumber 4
71 rdf:type schema:PublicationIssue
72 Nc03d2043ea0d485eb420bafcd011a011 schema:name doi
73 schema:value 10.1007/s00231-011-0917-2
74 rdf:type schema:PropertyValue
75 Nd3bf3f771cb54e969f704506a1868cb1 schema:name Department of Mechanical Engineering, Anna University of Technology, 620024, Tiruchirappalli, India
76 rdf:type schema:Organization
77 Ne8090bab69e74c05812bffe501efb738 rdf:first sg:person.011646353417.73
78 rdf:rest rdf:nil
79 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
80 schema:name Engineering
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
83 schema:name Interdisciplinary Engineering
84 rdf:type schema:DefinedTerm
85 sg:journal.1356910 schema:issn 0947-7411
86 1432-1181
87 schema:name Heat and Mass Transfer
88 rdf:type schema:Periodical
89 sg:person.011646353417.73 schema:affiliation https://www.grid.ac/institutes/grid.419653.c
90 schema:familyName Selvakumar
91 schema:givenName P.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011646353417.73
93 rdf:type schema:Person
94 sg:person.016161103217.35 schema:affiliation https://www.grid.ac/institutes/grid.419653.c
95 schema:familyName Suresh
96 schema:givenName S.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016161103217.35
98 rdf:type schema:Person
99 sg:person.0670361432.91 schema:affiliation Nd3bf3f771cb54e969f704506a1868cb1
100 schema:familyName Chandrasekar
101 schema:givenName M.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670361432.91
103 rdf:type schema:Person
104 sg:pub.10.1007/s11051-009-9657-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952917
105 https://doi.org/10.1007/s11051-009-9657-3
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.expthermflusci.2010.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033126637
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.icheatmasstransfer.2008.07.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013813307
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.icheatmasstransfer.2009.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044878949
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.icheatmasstransfer.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013113168
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040806658
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijheatfluidflow.2010.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024877903
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050816282
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051233788
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027372315
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028029997
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021002700
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051152128
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030390723
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006224356
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024324521
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045970186
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012654515
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.partic.2009.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013326538
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.powtec.2007.11.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029497506
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.rser.2009.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012673165
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0017-9310(01)00170-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037518885
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0017-9310(99)00369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009436639
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/s1359-4311(00)00067-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052490190
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.322107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057920251
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1080/08916159808946559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362381
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1115/1.1532008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062071683
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/1.2150834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062077311
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1115/1.2818775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062084673
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.419653.c schema:alternateName National Institute of Technology Tiruchirappalli
164 schema:name Department of Mechanical Engineering, National Institute of Technology, 620015, Tiruchirappalli, India
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...