Performance characteristics of HFC-134a and HFC-410A refrigeration system using a short-tube orifice as an expansion device View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-10

AUTHORS

Kitti Nilpueng, Chietta Supavarasuwat, Somchai Wongwises

ABSTRACT

In the present article, the effect of heat source temperature, heat sink temperature, short-tube orifice diameter and short-tube orifice length on the performance characteristics of HFC-140A and HFC-134a refrigeration system using a short-tube orifice as expansion device, i.e., mass flow rate, cooling capacity, compressor pressure ratio, power consumption, and second law efficiency are experimentally studied. The short-tube orifices diameters ranging from 0.849 to 1.085 mm with length ranging from 10 to 20 mm are used in this examination. The test run are done at heat source temperature ranging between 16.5 and 18.5°C, and heat sink temperature ranging between 30 and 35°C. The results show that the tendency of second law efficiency is increased as the short-tube orifice diameter and heat source temperature are enhanced, but it is decreased by increasing the short-tube orifice length and heat sink temperature. Under the similar conditions, the mass flow rate, cooling capacity, and compressor power consumption obtained from HFC-410A are higher than those obtained from HFC-134a. More... »

PAGES

1219-1227

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-011-0783-y

DOI

http://dx.doi.org/10.1007/s00231-011-0783-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049798032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut\u2019s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nilpueng", 
        "givenName": "Kitti", 
        "id": "sg:person.07736663720.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736663720.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "C Aircon Tech Co., Ltd., Bangkae, 10160, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Supavarasuwat", 
        "givenName": "Chietta", 
        "id": "sg:person.012127205320.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012127205320.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut\u2019s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.energy.2004.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002299794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2004.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002533595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2008.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008873434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2003.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011956600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2006.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017417927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2006.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018067387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2007.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028016686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2003.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032902907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(93)90057-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034683030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(93)90057-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034683030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.expthermflusci.2005.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038173331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10789669.2001.10391273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041579684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2004.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046817990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050804954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.applthermaleng.2003.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052034855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-7007(99)00009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052092103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrefrig.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052107893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2009.10.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052522932"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-10", 
    "datePublishedReg": "2011-10-01", 
    "description": "In the present article, the effect of heat source temperature, heat sink temperature, short-tube orifice diameter and short-tube orifice length on the performance characteristics of HFC-140A and HFC-134a refrigeration system using a short-tube orifice as expansion device, i.e., mass flow rate, cooling capacity, compressor pressure ratio, power consumption, and second law efficiency are experimentally studied. The short-tube orifices diameters ranging from 0.849 to 1.085 mm with length ranging from 10 to 20 mm are used in this examination. The test run are done at heat source temperature ranging between 16.5 and 18.5\u00b0C, and heat sink temperature ranging between 30 and 35\u00b0C. The results show that the tendency of second law efficiency is increased as the short-tube orifice diameter and heat source temperature are enhanced, but it is decreased by increasing the short-tube orifice length and heat sink temperature. Under the similar conditions, the mass flow rate, cooling capacity, and compressor power consumption obtained from HFC-410A are higher than those obtained from HFC-134a.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-011-0783-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Performance characteristics of HFC-134a and HFC-410A refrigeration system using a short-tube orifice as an expansion device", 
    "pagination": "1219-1227", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ed392500b8e1110e631eef4ceb04eda04f0e15560e8afed5eed43bb4990ae16f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-011-0783-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049798032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-011-0783-y", 
      "https://app.dimensions.ai/details/publication/pub.1049798032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00231-011-0783-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0783-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0783-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0783-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-011-0783-y'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-011-0783-y schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N90efe05a214a415a8a2926d8067a019f
4 schema:citation https://doi.org/10.1016/0140-7007(93)90057-f
5 https://doi.org/10.1016/j.apenergy.2009.10.020
6 https://doi.org/10.1016/j.applthermaleng.2003.10.006
7 https://doi.org/10.1016/j.applthermaleng.2006.05.009
8 https://doi.org/10.1016/j.applthermaleng.2007.05.005
9 https://doi.org/10.1016/j.enconman.2003.10.001
10 https://doi.org/10.1016/j.energy.2004.05.019
11 https://doi.org/10.1016/j.expthermflusci.2003.08.004
12 https://doi.org/10.1016/j.expthermflusci.2005.07.004
13 https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.017
14 https://doi.org/10.1016/j.ijrefrig.2004.04.002
15 https://doi.org/10.1016/j.ijrefrig.2004.10.007
16 https://doi.org/10.1016/j.ijrefrig.2006.11.006
17 https://doi.org/10.1016/j.ijrefrig.2008.12.003
18 https://doi.org/10.1016/j.ijrefrig.2009.08.002
19 https://doi.org/10.1016/s0140-7007(99)00009-2
20 https://doi.org/10.1080/10789669.2001.10391273
21 schema:datePublished 2011-10
22 schema:datePublishedReg 2011-10-01
23 schema:description In the present article, the effect of heat source temperature, heat sink temperature, short-tube orifice diameter and short-tube orifice length on the performance characteristics of HFC-140A and HFC-134a refrigeration system using a short-tube orifice as expansion device, i.e., mass flow rate, cooling capacity, compressor pressure ratio, power consumption, and second law efficiency are experimentally studied. The short-tube orifices diameters ranging from 0.849 to 1.085 mm with length ranging from 10 to 20 mm are used in this examination. The test run are done at heat source temperature ranging between 16.5 and 18.5°C, and heat sink temperature ranging between 30 and 35°C. The results show that the tendency of second law efficiency is increased as the short-tube orifice diameter and heat source temperature are enhanced, but it is decreased by increasing the short-tube orifice length and heat sink temperature. Under the similar conditions, the mass flow rate, cooling capacity, and compressor power consumption obtained from HFC-410A are higher than those obtained from HFC-134a.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N2426b852ea8a4b1488e1489e23a32d66
28 N55bcf40ca2e4467783c25da48eea393e
29 sg:journal.1356910
30 schema:name Performance characteristics of HFC-134a and HFC-410A refrigeration system using a short-tube orifice as an expansion device
31 schema:pagination 1219-1227
32 schema:productId N0165776abc7b4083ae094059836d03cc
33 N6c3d4234856741abb00b781e8786277a
34 N90a2dee2773a4955be9db1ffcbc0c1a5
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049798032
36 https://doi.org/10.1007/s00231-011-0783-y
37 schema:sdDatePublished 2019-04-10T22:33
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N06e557e6199643f8bca918781688580e
40 schema:url http://link.springer.com/10.1007%2Fs00231-011-0783-y
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0165776abc7b4083ae094059836d03cc schema:name readcube_id
45 schema:value ed392500b8e1110e631eef4ceb04eda04f0e15560e8afed5eed43bb4990ae16f
46 rdf:type schema:PropertyValue
47 N06e557e6199643f8bca918781688580e schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N2426b852ea8a4b1488e1489e23a32d66 schema:issueNumber 10
50 rdf:type schema:PublicationIssue
51 N532dd2cc69b64488944f336296f4bb8c schema:name C Aircon Tech Co., Ltd., Bangkae, 10160, Bangkok, Thailand
52 rdf:type schema:Organization
53 N55bcf40ca2e4467783c25da48eea393e schema:volumeNumber 47
54 rdf:type schema:PublicationVolume
55 N6c3d4234856741abb00b781e8786277a schema:name dimensions_id
56 schema:value pub.1049798032
57 rdf:type schema:PropertyValue
58 N90a2dee2773a4955be9db1ffcbc0c1a5 schema:name doi
59 schema:value 10.1007/s00231-011-0783-y
60 rdf:type schema:PropertyValue
61 N90efe05a214a415a8a2926d8067a019f rdf:first sg:person.07736663720.05
62 rdf:rest Ne0fc6d4abe024af084697bba3284d66b
63 Ndfbf269e4b7a4a44afdedc69e6fedf20 rdf:first sg:person.012267021412.00
64 rdf:rest rdf:nil
65 Ne0fc6d4abe024af084697bba3284d66b rdf:first sg:person.012127205320.54
66 rdf:rest Ndfbf269e4b7a4a44afdedc69e6fedf20
67 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
68 schema:name Engineering
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
71 schema:name Interdisciplinary Engineering
72 rdf:type schema:DefinedTerm
73 sg:journal.1356910 schema:issn 0947-7411
74 1432-1181
75 schema:name Heat and Mass Transfer
76 rdf:type schema:Periodical
77 sg:person.012127205320.54 schema:affiliation N532dd2cc69b64488944f336296f4bb8c
78 schema:familyName Supavarasuwat
79 schema:givenName Chietta
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012127205320.54
81 rdf:type schema:Person
82 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
83 schema:familyName Wongwises
84 schema:givenName Somchai
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
86 rdf:type schema:Person
87 sg:person.07736663720.05 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
88 schema:familyName Nilpueng
89 schema:givenName Kitti
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07736663720.05
91 rdf:type schema:Person
92 https://doi.org/10.1016/0140-7007(93)90057-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1034683030
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.apenergy.2009.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052522932
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.applthermaleng.2003.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052034855
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.applthermaleng.2006.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017417927
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.applthermaleng.2007.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028016686
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.enconman.2003.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032902907
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.energy.2004.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002299794
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.expthermflusci.2003.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011956600
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.expthermflusci.2005.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038173331
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050804954
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ijrefrig.2004.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046817990
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ijrefrig.2004.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002533595
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.ijrefrig.2006.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018067387
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ijrefrig.2008.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008873434
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.ijrefrig.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052107893
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0140-7007(99)00009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052092103
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/10789669.2001.10391273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041579684
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
127 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, 10140, Bangmod, Bangkok, Thailand
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...