Effect of fin thickness on air-side performance of herringbone wavy fin-and-tube heat exchangers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-12

AUTHORS

Somchai Wongwises, Yutasak Chokeman

ABSTRACT

In the present study, the effects of fin thickness on the heat transfer and friction characteristics of fin-and-tube heat exchangers having herringbone wavy fin configuration are experimentally investigated. The experimental apparatus consists essentially of a well insulated open wind tunnel and herringbone wavy fin-and-tube heat exchangers made from aluminium plate finned, copper tube. Air and water are used to be working fluids in air-side and tube-side, respectively. A total of 10 samples of the fin-and-tube heat exchangers are tested. The experimental procedures are conducted by keeping the inlet water temperature at a pre-selected value, adjusting the water volumetric flow rate at a specific value and varying the air velocity. The results are presented as plots of the Colburn factor and friction factor against the Reynolds number based on the fin collar outside diameter (ReDc). From the results, it is found that for number of tube rows (N) = 2, the Colburn factor increases with increasing fin thickness. For N ≥ 4, the Colburn factor decreases with increasing fin thickness when ReDc < 1800, and increases with increasing fin thickness when ReDc > 2500. The friction factor increases with increasing fin thickness when fin pitch (Fp) ≤ 1.81 mm. More... »

PAGES

147-154

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00231-004-0507-7

DOI

http://dx.doi.org/10.1007/s00231-004-0507-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052475469


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "King Mongkut's University of Technology Thonburi", 
          "id": "https://www.grid.ac/institutes/grid.412151.2", 
          "name": [
            "Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut\u2019s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wongwises", 
        "givenName": "Somchai", 
        "id": "sg:person.012267021412.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Graduate School of Energy and Environment", 
          "id": "https://www.grid.ac/institutes/grid.484394.6", 
          "name": [
            "The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut\u2019s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chokeman", 
        "givenName": "Yutasak", 
        "id": "sg:person.011760064741.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011760064741.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0017-9310(99)00229-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005611778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(01)00011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024626085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0894-1777(96)00056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033437929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/089161599269825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038166639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0140-7007(96)00021-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047898431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-7007(01)00049-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049686235"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "In the present study, the effects of fin thickness on the heat transfer and friction characteristics of fin-and-tube heat exchangers having herringbone wavy fin configuration are experimentally investigated. The experimental apparatus consists essentially of a well insulated open wind tunnel and herringbone wavy fin-and-tube heat exchangers made from aluminium plate finned, copper tube. Air and water are used to be working fluids in air-side and tube-side, respectively. A total of 10 samples of the fin-and-tube heat exchangers are tested. The experimental procedures are conducted by keeping the inlet water temperature at a pre-selected value, adjusting the water volumetric flow rate at a specific value and varying the air velocity. The results are presented as plots of the Colburn factor and friction factor against the Reynolds number based on the fin collar outside diameter (ReDc). From the results, it is found that for number of tube rows (N) = 2, the Colburn factor increases with increasing fin thickness. For N \u2265 4, the Colburn factor decreases with increasing fin thickness when ReDc < 1800, and increases with increasing fin thickness when ReDc > 2500. The friction factor increases with increasing fin thickness when fin pitch (Fp) \u2264 1.81 mm.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00231-004-0507-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356910", 
        "issn": [
          "0947-7411", 
          "1432-1181"
        ], 
        "name": "Heat and Mass Transfer", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Effect of fin thickness on air-side performance of herringbone wavy fin-and-tube heat exchangers", 
    "pagination": "147-154", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f9f56cf9564f7569308d8a029f4381a0c234eaecb17e0ef9507501b248ddd437"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00231-004-0507-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052475469"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00231-004-0507-7", 
      "https://app.dimensions.ai/details/publication/pub.1052475469"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00231-004-0507-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00231-004-0507-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00231-004-0507-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00231-004-0507-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00231-004-0507-7'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00231-004-0507-7 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N25da60fcfd174195978824e511e1230d
4 schema:citation https://doi.org/10.1016/0140-7007(96)00021-7
5 https://doi.org/10.1016/s0017-9310(01)00011-4
6 https://doi.org/10.1016/s0017-9310(99)00229-x
7 https://doi.org/10.1016/s0140-7007(01)00049-4
8 https://doi.org/10.1016/s0894-1777(96)00056-8
9 https://doi.org/10.1080/089161599269825
10 schema:datePublished 2004-12
11 schema:datePublishedReg 2004-12-01
12 schema:description In the present study, the effects of fin thickness on the heat transfer and friction characteristics of fin-and-tube heat exchangers having herringbone wavy fin configuration are experimentally investigated. The experimental apparatus consists essentially of a well insulated open wind tunnel and herringbone wavy fin-and-tube heat exchangers made from aluminium plate finned, copper tube. Air and water are used to be working fluids in air-side and tube-side, respectively. A total of 10 samples of the fin-and-tube heat exchangers are tested. The experimental procedures are conducted by keeping the inlet water temperature at a pre-selected value, adjusting the water volumetric flow rate at a specific value and varying the air velocity. The results are presented as plots of the Colburn factor and friction factor against the Reynolds number based on the fin collar outside diameter (ReDc). From the results, it is found that for number of tube rows (N) = 2, the Colburn factor increases with increasing fin thickness. For N ≥ 4, the Colburn factor decreases with increasing fin thickness when ReDc < 1800, and increases with increasing fin thickness when ReDc > 2500. The friction factor increases with increasing fin thickness when fin pitch (Fp) ≤ 1.81 mm.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nb66f9e84722e4e8fada6f3ce3082edb7
17 Nec87f7119035445595da5aa2490bacf3
18 sg:journal.1356910
19 schema:name Effect of fin thickness on air-side performance of herringbone wavy fin-and-tube heat exchangers
20 schema:pagination 147-154
21 schema:productId Na39192a8291d4313bfaf9a4560a12175
22 Nb073379534ef4eedb922138f669a0de3
23 Nc6c306065db845a5811b6753ec15b5c1
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475469
25 https://doi.org/10.1007/s00231-004-0507-7
26 schema:sdDatePublished 2019-04-10T14:11
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nac5b1c2ee8c5458aa730c8469057f24c
29 schema:url http://link.springer.com/10.1007%2Fs00231-004-0507-7
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N25da60fcfd174195978824e511e1230d rdf:first sg:person.012267021412.00
34 rdf:rest Na99c90474bf7476fa73428a8ee2e426e
35 Na39192a8291d4313bfaf9a4560a12175 schema:name dimensions_id
36 schema:value pub.1052475469
37 rdf:type schema:PropertyValue
38 Na99c90474bf7476fa73428a8ee2e426e rdf:first sg:person.011760064741.44
39 rdf:rest rdf:nil
40 Nac5b1c2ee8c5458aa730c8469057f24c schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nb073379534ef4eedb922138f669a0de3 schema:name readcube_id
43 schema:value f9f56cf9564f7569308d8a029f4381a0c234eaecb17e0ef9507501b248ddd437
44 rdf:type schema:PropertyValue
45 Nb66f9e84722e4e8fada6f3ce3082edb7 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 Nc6c306065db845a5811b6753ec15b5c1 schema:name doi
48 schema:value 10.1007/s00231-004-0507-7
49 rdf:type schema:PropertyValue
50 Nec87f7119035445595da5aa2490bacf3 schema:volumeNumber 41
51 rdf:type schema:PublicationVolume
52 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
53 schema:name Engineering
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
56 schema:name Interdisciplinary Engineering
57 rdf:type schema:DefinedTerm
58 sg:journal.1356910 schema:issn 0947-7411
59 1432-1181
60 schema:name Heat and Mass Transfer
61 rdf:type schema:Periodical
62 sg:person.011760064741.44 schema:affiliation https://www.grid.ac/institutes/grid.484394.6
63 schema:familyName Chokeman
64 schema:givenName Yutasak
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011760064741.44
66 rdf:type schema:Person
67 sg:person.012267021412.00 schema:affiliation https://www.grid.ac/institutes/grid.412151.2
68 schema:familyName Wongwises
69 schema:givenName Somchai
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012267021412.00
71 rdf:type schema:Person
72 https://doi.org/10.1016/0140-7007(96)00021-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047898431
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/s0017-9310(01)00011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024626085
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/s0017-9310(99)00229-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005611778
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/s0140-7007(01)00049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049686235
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/s0894-1777(96)00056-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033437929
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/089161599269825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038166639
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.412151.2 schema:alternateName King Mongkut's University of Technology Thonburi
85 schema:name Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand
86 rdf:type schema:Organization
87 https://www.grid.ac/institutes/grid.484394.6 schema:alternateName Joint Graduate School of Energy and Environment
88 schema:name The Joint Graduate School of Energy and Environment (JGSEE) King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...