Variant fountain theorems and their applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-03

AUTHORS

Wenming Zou

ABSTRACT

In this paper we establish some variant fountain theorems without (P.S.)-type assumption. The abstract results will be used to study the symmetric nonlinear Schrödinger equations and Dirichlet boundary value problems. Under no Ambrosetti–Rabinowitz's superquadraticity condition, we obtain infinitely many large energy and small negative energy solutions respectively.

PAGES

343-358

Journal

TITLE

manuscripta mathematica

ISSUE

3

VOLUME

104

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002290170032

DOI

http://dx.doi.org/10.1007/s002290170032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040987594


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Mathematical Sciences, Tsinghua University, Beijing 100084,\u00b6P. R. China. e-mail: wzou@math.tsinghua.edu.cn, CN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zou", 
        "givenName": "Wenming", 
        "id": "sg:person.010230600467.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010230600467.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00946631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003157030", 
          "https://doi.org/10.1007/bf00946631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1994.1078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005610073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1995-1301008-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008262915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00004774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008883358", 
          "https://doi.org/10.1007/pl00004774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010717021", 
          "https://doi.org/10.1007/bf02392272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022709270", 
          "https://doi.org/10.1007/978-1-4612-4146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4146-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022709270", 
          "https://doi.org/10.1007/978-1-4612-4146-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(73)90051-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032792397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1994.451.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041936176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1993.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042880605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(93)90151-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048535124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500013147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054893031"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-03", 
    "datePublishedReg": "2001-03-01", 
    "description": "In this paper we establish some variant fountain theorems without (P.S.)-type assumption. The abstract results will be used to study the symmetric nonlinear Schr\u00f6dinger equations and Dirichlet boundary value problems. Under no Ambrosetti\u2013Rabinowitz's superquadraticity condition, we obtain infinitely many large energy and small negative energy solutions respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002290170032", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136220", 
        "issn": [
          "0025-2611", 
          "1432-1785"
        ], 
        "name": "manuscripta mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "name": "Variant fountain theorems and their applications", 
    "pagination": "343-358", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c3406932004c9febf750676fe460e88785b5093378b499727e09507e5ff1e453"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002290170032"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040987594"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002290170032", 
      "https://app.dimensions.ai/details/publication/pub.1040987594"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002290170032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002290170032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002290170032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002290170032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002290170032'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002290170032 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N27a5d12a7b174c73902a0911e4242156
4 schema:citation sg:pub.10.1007/978-1-4612-4146-1
5 sg:pub.10.1007/bf00946631
6 sg:pub.10.1007/bf02392272
7 sg:pub.10.1007/pl00004774
8 https://doi.org/10.1006/jfan.1993.1133
9 https://doi.org/10.1006/jfan.1994.1078
10 https://doi.org/10.1016/0022-1236(73)90051-7
11 https://doi.org/10.1016/0362-546x(93)90151-h
12 https://doi.org/10.1017/s0308210500013147
13 https://doi.org/10.1090/s0002-9939-1995-1301008-2
14 https://doi.org/10.1515/crll.1994.451.149
15 schema:datePublished 2001-03
16 schema:datePublishedReg 2001-03-01
17 schema:description In this paper we establish some variant fountain theorems without (P.S.)-type assumption. The abstract results will be used to study the symmetric nonlinear Schrödinger equations and Dirichlet boundary value problems. Under no Ambrosetti–Rabinowitz's superquadraticity condition, we obtain infinitely many large energy and small negative energy solutions respectively.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N3c7864420c8546a5aaad955fcfaa9fea
22 Ncf855f40b15644eab1df884a8e033d1a
23 sg:journal.1136220
24 schema:name Variant fountain theorems and their applications
25 schema:pagination 343-358
26 schema:productId N1583f51704644332bb6f44caed3f3ef0
27 N944cef1c0e85477899c41dd94dbe4355
28 Nef8b995c41734efeba153b32f7ac79a8
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040987594
30 https://doi.org/10.1007/s002290170032
31 schema:sdDatePublished 2019-04-10T21:37
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N2d4682a9e4a14748a888529a5c7d31c8
34 schema:url http://link.springer.com/10.1007%2Fs002290170032
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N1583f51704644332bb6f44caed3f3ef0 schema:name doi
39 schema:value 10.1007/s002290170032
40 rdf:type schema:PropertyValue
41 N27a5d12a7b174c73902a0911e4242156 rdf:first sg:person.010230600467.31
42 rdf:rest rdf:nil
43 N2d4682a9e4a14748a888529a5c7d31c8 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N3c7864420c8546a5aaad955fcfaa9fea schema:issueNumber 3
46 rdf:type schema:PublicationIssue
47 N944cef1c0e85477899c41dd94dbe4355 schema:name dimensions_id
48 schema:value pub.1040987594
49 rdf:type schema:PropertyValue
50 Ncf855f40b15644eab1df884a8e033d1a schema:volumeNumber 104
51 rdf:type schema:PublicationVolume
52 Nef8b995c41734efeba153b32f7ac79a8 schema:name readcube_id
53 schema:value c3406932004c9febf750676fe460e88785b5093378b499727e09507e5ff1e453
54 rdf:type schema:PropertyValue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136220 schema:issn 0025-2611
62 1432-1785
63 schema:name manuscripta mathematica
64 rdf:type schema:Periodical
65 sg:person.010230600467.31 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
66 schema:familyName Zou
67 schema:givenName Wenming
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010230600467.31
69 rdf:type schema:Person
70 sg:pub.10.1007/978-1-4612-4146-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022709270
71 https://doi.org/10.1007/978-1-4612-4146-1
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf00946631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003157030
74 https://doi.org/10.1007/bf00946631
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf02392272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010717021
77 https://doi.org/10.1007/bf02392272
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/pl00004774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008883358
80 https://doi.org/10.1007/pl00004774
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1006/jfan.1993.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042880605
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1006/jfan.1994.1078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005610073
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0022-1236(73)90051-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032792397
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0362-546x(93)90151-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1048535124
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1017/s0308210500013147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054893031
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1090/s0002-9939-1995-1301008-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008262915
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1515/crll.1994.451.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041936176
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
97 schema:name Department of Mathematical Sciences, Tsinghua University, Beijing 100084,¶P. R. China. e-mail: wzou@math.tsinghua.edu.cn, CN
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...