# Decomposable polynomials in second order linear recurrence sequences

Ontology type: schema:ScholarlyArticle      Open Access: True

### Article Info

DATE

2018-10-04

AUTHORS

Clemens Fuchs, Christina Karolus, Dijana Kreso

ABSTRACT

We study elements of second order linear recurrence sequences (Gn)n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G_n)_{n= 0}^{\infty }$$\end{document} of polynomials in C[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}[x]$$\end{document} which are decomposable, i.e. representable as Gn=g∘h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n=g\circ h$$\end{document} for some g,h∈C[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g, h\in {{\mathbb {C}}}[x]$$\end{document} satisfying degg,degh>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg g,\deg h>1$$\end{document}. Under certain assumptions, and provided that h is not of particular type, we show that degg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg g$$\end{document} may be bounded by a constant independent of n, depending only on the sequence. More... »

PAGES

321-346

### References to SciGraph publications

• 2003-09. Diophantine equations between polynomials obeying second order recurrences in PERIODICA MATHEMATICA HUNGARICA
• 2009-11. Polynomials with a common composite in ISRAEL JOURNAL OF MATHEMATICS
• 2008-04-24. On composite lacunary polynomials and the proof of a conjecture of Schinzel in INVENTIONES MATHEMATICAE
• 2002-11. On the Diophantine Equation Gn(x) = Gm(P(x)) in MONATSHEFTE FÜR MATHEMATIK
• ### Journal

TITLE

manuscripta mathematica

ISSUE

3-4

VOLUME

159

### Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00229-018-1070-8

DOI

http://dx.doi.org/10.1007/s00229-018-1070-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107412451

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria",
"id": "http://www.grid.ac/institutes/grid.7039.d",
"name": [
"University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria"
],
"type": "Organization"
},
"familyName": "Fuchs",
"givenName": "Clemens",
"id": "sg:person.011534256073.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria",
"id": "http://www.grid.ac/institutes/grid.7039.d",
"name": [
"University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria"
],
"type": "Organization"
},
"familyName": "Karolus",
"givenName": "Christina",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Graz University of Technology, Kopernikusgasse 24/II, 8010, Graz, Austria",
"id": "http://www.grid.ac/institutes/grid.410413.3",
"name": [
"Graz University of Technology, Kopernikusgasse 24/II, 8010, Graz, Austria"
],
"type": "Organization"
},
"familyName": "Kreso",
"givenName": "Dijana",
"id": "sg:person.07725507570.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725507570.17"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11856-009-0105-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003311837",
"https://doi.org/10.1007/s11856-009-0105-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00605-002-0497-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019283551",
"https://doi.org/10.1007/s00605-002-0497-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-008-0136-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006053189",
"https://doi.org/10.1007/s00222-008-0136-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/b:mahu.0000010816.85657.40",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000403161",
"https://doi.org/10.1023/b:mahu.0000010816.85657.40"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-10-04",
"datePublishedReg": "2018-10-04",
"description": "We study elements of second order linear recurrence sequences (Gn)n=0\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(G_n)_{n= 0}^{\\infty }$$\\end{document} of polynomials in C[x]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\mathbb {C}}}[x]$$\\end{document} which are decomposable, i.e. representable as Gn=g\u2218h\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$G_n=g\\circ h$$\\end{document} for some g,h\u2208C[x]\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$g, h\\in {{\\mathbb {C}}}[x]$$\\end{document} satisfying degg,degh>1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\deg g,\\deg h>1$$\\end{document}. Under certain assumptions, and provided that h is not of particular type, we show that degg\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\deg g$$\\end{document} may be bounded by a constant independent of n, depending only on the sequence.",
"genre": "article",
"id": "sg:pub.10.1007/s00229-018-1070-8",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.7579252",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6206592",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136220",
"issn": [
"0025-2611",
"1432-1785"
],
"name": "manuscripta mathematica",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"independent",
"GN",
"particular type",
"types",
"sequence",
"elements",
"certain assumptions",
"assumption",
"DEGG",
"constant independent",
"polynomials",
"second order linear recurrence sequences",
"order linear recurrence sequences",
"linear recurrence sequences",
"recurrence sequences",
"satisfying degg",
"decomposable polynomials"
],
"name": "Decomposable polynomials in second order linear recurrence sequences",
"pagination": "321-346",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1107412451"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00229-018-1070-8"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00229-018-1070-8",
"https://app.dimensions.ai/details/publication/pub.1107412451"
],
"sdDataset": "articles",
"sdDatePublished": "2022-01-01T18:47",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_761.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00229-018-1070-8"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1070-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1070-8'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1070-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1070-8'

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      46 URIs      34 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
3 schema:author N304d70072b2b457393840418e0fe535c
4 schema:citation sg:pub.10.1007/s00222-008-0136-8
5 sg:pub.10.1007/s00605-002-0497-9
6 sg:pub.10.1007/s11856-009-0105-y
7 sg:pub.10.1023/b:mahu.0000010816.85657.40
8 schema:datePublished 2018-10-04
9 schema:datePublishedReg 2018-10-04
10 schema:description We study elements of second order linear recurrence sequences (Gn)n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G_n)_{n= 0}^{\infty }$$\end{document} of polynomials in C[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}[x]$$\end{document} which are decomposable, i.e. representable as Gn=g∘h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n=g\circ h$$\end{document} for some g,h∈C[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g, h\in {{\mathbb {C}}}[x]$$\end{document} satisfying degg,degh>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg g,\deg h>1$$\end{document}. Under certain assumptions, and provided that h is not of particular type, we show that degg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg g$$\end{document} may be bounded by a constant independent of n, depending only on the sequence.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
15 N96c30ed45ae44700915f9abd4a4f62b0
16 sg:journal.1136220
17 schema:keywords DEGG
18 GN
19 assumption
20 certain assumptions
21 constant independent
22 decomposable polynomials
23 elements
24 independent
25 linear recurrence sequences
26 order linear recurrence sequences
27 particular type
28 polynomials
29 recurrence sequences
30 satisfying degg
31 second order linear recurrence sequences
32 sequence
33 types
34 schema:name Decomposable polynomials in second order linear recurrence sequences
35 schema:pagination 321-346
36 schema:productId N79096581b0db49a091ed1ea0a7398157
37 Nf9880770d99444a48d32eb68c02e20fa
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107412451
39 https://doi.org/10.1007/s00229-018-1070-8
40 schema:sdDatePublished 2022-01-01T18:47
42 schema:sdPublisher N4b3633070949456eab036def73719967
43 schema:url https://doi.org/10.1007/s00229-018-1070-8
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N304d70072b2b457393840418e0fe535c rdf:first sg:person.011534256073.49
48 rdf:rest N5f5084f7e3c44ebaafbab80aa507dfee
49 N4b3633070949456eab036def73719967 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
52 rdf:type schema:PublicationIssue
53 N5f5084f7e3c44ebaafbab80aa507dfee rdf:first Nfcea091383f244ebbcc8b163e2909883
54 rdf:rest Nc308e6edcebb45b4987d8540bfc3b675
55 N79096581b0db49a091ed1ea0a7398157 schema:name dimensions_id
56 schema:value pub.1107412451
57 rdf:type schema:PropertyValue
59 rdf:type schema:PublicationVolume
60 Nc308e6edcebb45b4987d8540bfc3b675 rdf:first sg:person.07725507570.17
61 rdf:rest rdf:nil
62 Nf9880770d99444a48d32eb68c02e20fa schema:name doi
63 schema:value 10.1007/s00229-018-1070-8
64 rdf:type schema:PropertyValue
65 Nfcea091383f244ebbcc8b163e2909883 schema:affiliation grid-institutes:grid.7039.d
66 schema:familyName Karolus
67 schema:givenName Christina
68 rdf:type schema:Person
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:grant.6206592 http://pending.schema.org/fundedItem sg:pub.10.1007/s00229-018-1070-8
76 rdf:type schema:MonetaryGrant
77 sg:grant.7579252 http://pending.schema.org/fundedItem sg:pub.10.1007/s00229-018-1070-8
78 rdf:type schema:MonetaryGrant
79 sg:journal.1136220 schema:issn 0025-2611
80 1432-1785
81 schema:name manuscripta mathematica
82 schema:publisher Springer Nature
83 rdf:type schema:Periodical
84 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.7039.d
85 schema:familyName Fuchs
86 schema:givenName Clemens
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
88 rdf:type schema:Person
89 sg:person.07725507570.17 schema:affiliation grid-institutes:grid.410413.3
90 schema:familyName Kreso
91 schema:givenName Dijana
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07725507570.17
93 rdf:type schema:Person
94 sg:pub.10.1007/s00222-008-0136-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006053189
95 https://doi.org/10.1007/s00222-008-0136-8
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00605-002-0497-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019283551
98 https://doi.org/10.1007/s00605-002-0497-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s11856-009-0105-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003311837
101 https://doi.org/10.1007/s11856-009-0105-y
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/b:mahu.0000010816.85657.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000403161
104 https://doi.org/10.1023/b:mahu.0000010816.85657.40
105 rdf:type schema:CreativeWork
106 grid-institutes:grid.410413.3 schema:alternateName Graz University of Technology, Kopernikusgasse 24/II, 8010, Graz, Austria
107 schema:name Graz University of Technology, Kopernikusgasse 24/II, 8010, Graz, Austria
108 rdf:type schema:Organization
109 grid-institutes:grid.7039.d schema:alternateName University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria
110 schema:name University of Salzburg, Hellbrunnerstr. 34/I, 5020, Salzburg, Austria
111 rdf:type schema:Organization