On general type surfaces with q=1 and c2=3pg View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Matthew Stover

ABSTRACT

Let S be a minimal surface of general type with irregularity q(S)=1. Well-known inequalities between characteristic numbers imply that 3pg(S)≤c2(S)≤10pg(S),where pg(S) is the geometric genus and c2(S) the topological Euler characteristic. Surfaces achieving equality for the upper bound are classified, starting with work of Debarre. We study equality in the lower bound, showing that for each n≥1 there exists a surface with q=1, pg=n, and c2=3n. The moduli space Mn of such surfaces is a finite set of points, and we prove that #Mn→∞ as n→∞. Equivalently, this paper studies the number of closed complex hyperbolic 2-manifolds of first betti number 2 as a function of volume; in particular, such a manifold exists for every possible volume. More... »

PAGES

1-12

References to SciGraph publications

  • 2006. Complex Surfaces of General Type: Some Recent Progress in GLOBAL ASPECTS OF COMPLEX GEOMETRY
  • 1989-12. Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 2014-10. Hurwitz ball quotients in MATHEMATISCHE ZEITSCHRIFT
  • 2015-12. On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type in RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO SERIES 2
  • 2003. Subgroup Growth in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00229-018-1035-y

    DOI

    http://dx.doi.org/10.1007/s00229-018-1035-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1103792389


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Temple University", 
              "id": "https://www.grid.ac/institutes/grid.264727.2", 
              "name": [
                "Temple University, Philadelphia, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stover", 
            "givenName": "Matthew", 
            "id": "sg:person.0737705222.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737705222.35"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.crma.2009.11.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003389255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02698843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008419629", 
              "https://doi.org/10.1007/bf02698843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1008758064", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8965-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008758064", 
              "https://doi.org/10.1007/978-3-0348-8965-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8965-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008758064", 
              "https://doi.org/10.1007/978-3-0348-8965-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsco.1996.0125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036727338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12215-015-0212-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041111712", 
              "https://doi.org/10.1007/s12215-015-0212-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-35480-8_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044336574", 
              "https://doi.org/10.1007/3-540-35480-8_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-014-1306-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044559263", 
              "https://doi.org/10.1007/s00209-014-1306-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-04-12432-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14231/ag-2014-021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067217829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1971321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069676604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.1573", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073137268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.24033/bsmf.1965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083660959"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/387/07237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089201589"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "Let S be a minimal surface of general type with irregularity q(S)=1. Well-known inequalities between characteristic numbers imply that 3pg(S)\u2264c2(S)\u226410pg(S),where pg(S) is the geometric genus and c2(S) the topological Euler characteristic. Surfaces achieving equality for the upper bound are classified, starting with work of Debarre. We study equality in the lower bound, showing that for each n\u22651 there exists a surface with q=1, pg=n, and c2=3n. The moduli space Mn of such surfaces is a finite set of points, and we prove that #Mn\u2192\u221e as n\u2192\u221e. Equivalently, this paper studies the number of closed complex hyperbolic 2-manifolds of first betti number 2 as a function of volume; in particular, such a manifold exists for every possible volume.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00229-018-1035-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3492406", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136220", 
            "issn": [
              "0025-2611", 
              "1432-1785"
            ], 
            "name": "manuscripta mathematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "159"
          }
        ], 
        "name": "On general type surfaces with q=1 and c2=3pg", 
        "pagination": "1-12", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bf4745616d643e8c153480e342d12f99881f6be86de0a1bbb0223eb2cee1d3bf"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00229-018-1035-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1103792389"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00229-018-1035-y", 
          "https://app.dimensions.ai/details/publication/pub.1103792389"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117123_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00229-018-1035-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1035-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1035-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1035-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1035-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    109 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00229-018-1035-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd7e042902048400aa26ab08fec2ba597
    4 schema:citation sg:pub.10.1007/3-540-35480-8_1
    5 sg:pub.10.1007/978-3-0348-8965-0
    6 sg:pub.10.1007/bf02698843
    7 sg:pub.10.1007/s00209-014-1306-6
    8 sg:pub.10.1007/s12215-015-0212-z
    9 https://app.dimensions.ai/details/publication/pub.1008758064
    10 https://doi.org/10.1006/jsco.1996.0125
    11 https://doi.org/10.1016/j.crma.2009.11.016
    12 https://doi.org/10.1090/conm/387/07237
    13 https://doi.org/10.1215/s0012-7094-04-12432-7
    14 https://doi.org/10.14231/ag-2014-021
    15 https://doi.org/10.2307/1971321
    16 https://doi.org/10.24033/bsmf.1965
    17 https://doi.org/10.5802/aif.1573
    18 schema:datePublished 2019-05
    19 schema:datePublishedReg 2019-05-01
    20 schema:description Let S be a minimal surface of general type with irregularity q(S)=1. Well-known inequalities between characteristic numbers imply that 3pg(S)≤c2(S)≤10pg(S),where pg(S) is the geometric genus and c2(S) the topological Euler characteristic. Surfaces achieving equality for the upper bound are classified, starting with work of Debarre. We study equality in the lower bound, showing that for each n≥1 there exists a surface with q=1, pg=n, and c2=3n. The moduli space Mn of such surfaces is a finite set of points, and we prove that #Mn→∞ as n→∞. Equivalently, this paper studies the number of closed complex hyperbolic 2-manifolds of first betti number 2 as a function of volume; in particular, such a manifold exists for every possible volume.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N4a697081a65442d58d230f390b61c534
    25 N99100cbc5d3f46a396818daec3a34b53
    26 sg:journal.1136220
    27 schema:name On general type surfaces with q=1 and c2=3pg
    28 schema:pagination 1-12
    29 schema:productId N2ce5313aa88f4f4db7264d748d684fc7
    30 N5d13af52973e407e82d0fc5306f8f0d0
    31 Nd409706df7c648ac92e1d8497a8975ee
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103792389
    33 https://doi.org/10.1007/s00229-018-1035-y
    34 schema:sdDatePublished 2019-04-11T14:20
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher Nc25ec901c3da4fb6bafd24285a1ca134
    37 schema:url https://link.springer.com/10.1007%2Fs00229-018-1035-y
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N2ce5313aa88f4f4db7264d748d684fc7 schema:name readcube_id
    42 schema:value bf4745616d643e8c153480e342d12f99881f6be86de0a1bbb0223eb2cee1d3bf
    43 rdf:type schema:PropertyValue
    44 N4a697081a65442d58d230f390b61c534 schema:volumeNumber 159
    45 rdf:type schema:PublicationVolume
    46 N5d13af52973e407e82d0fc5306f8f0d0 schema:name dimensions_id
    47 schema:value pub.1103792389
    48 rdf:type schema:PropertyValue
    49 N99100cbc5d3f46a396818daec3a34b53 schema:issueNumber 1-2
    50 rdf:type schema:PublicationIssue
    51 Nc25ec901c3da4fb6bafd24285a1ca134 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nd409706df7c648ac92e1d8497a8975ee schema:name doi
    54 schema:value 10.1007/s00229-018-1035-y
    55 rdf:type schema:PropertyValue
    56 Nd7e042902048400aa26ab08fec2ba597 rdf:first sg:person.0737705222.35
    57 rdf:rest rdf:nil
    58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Mathematical Sciences
    60 rdf:type schema:DefinedTerm
    61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    62 schema:name Pure Mathematics
    63 rdf:type schema:DefinedTerm
    64 sg:grant.3492406 http://pending.schema.org/fundedItem sg:pub.10.1007/s00229-018-1035-y
    65 rdf:type schema:MonetaryGrant
    66 sg:journal.1136220 schema:issn 0025-2611
    67 1432-1785
    68 schema:name manuscripta mathematica
    69 rdf:type schema:Periodical
    70 sg:person.0737705222.35 schema:affiliation https://www.grid.ac/institutes/grid.264727.2
    71 schema:familyName Stover
    72 schema:givenName Matthew
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737705222.35
    74 rdf:type schema:Person
    75 sg:pub.10.1007/3-540-35480-8_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044336574
    76 https://doi.org/10.1007/3-540-35480-8_1
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/978-3-0348-8965-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008758064
    79 https://doi.org/10.1007/978-3-0348-8965-0
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/bf02698843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008419629
    82 https://doi.org/10.1007/bf02698843
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s00209-014-1306-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559263
    85 https://doi.org/10.1007/s00209-014-1306-6
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/s12215-015-0212-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041111712
    88 https://doi.org/10.1007/s12215-015-0212-z
    89 rdf:type schema:CreativeWork
    90 https://app.dimensions.ai/details/publication/pub.1008758064 schema:CreativeWork
    91 https://doi.org/10.1006/jsco.1996.0125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036727338
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.crma.2009.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003389255
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1090/conm/387/07237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089201589
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1215/s0012-7094-04-12432-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415469
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.14231/ag-2014-021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067217829
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.2307/1971321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676604
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.24033/bsmf.1965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660959
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.5802/aif.1573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137268
    106 rdf:type schema:CreativeWork
    107 https://www.grid.ac/institutes/grid.264727.2 schema:alternateName Temple University
    108 schema:name Temple University, Philadelphia, USA
    109 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...