Ontology type: schema:ScholarlyArticle
2019-01
AUTHORS ABSTRACTWe study the multiplicity of concentrating solutions to the nonlinear fractional Kirchhoff equation ε2sa+ε4s-3b∫R3|(-Δ)s2u|2dx(-Δ)su+V(x)u=f(u)inR3,where ε>0 is a positive parameter, (-Δ)s is the fractional laplacian with s∈(34,1),a,b are positive constants, and V is a positive potential such that inf∂ΛV>infΛV for some open bounded subset Λ⊂R3. We relate the number of positive solutions with the topology of the set where V attains its minimum in Λ. The proof is based on the Ljusternik–Schnirelmann theory. More... »
PAGES159-203
http://scigraph.springernature.com/pub.10.1007/s00229-018-1017-0
DOIhttp://dx.doi.org/10.1007/s00229-018-1017-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1101386682
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Minzu University of China",
"id": "https://www.grid.ac/institutes/grid.411077.4",
"name": [
"College of Science, Minzu University of China, 100081, Beijing, China"
],
"type": "Organization"
},
"familyName": "He",
"givenName": "Xiaoming",
"id": "sg:person.011047437155.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011047437155.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Tsinghua University",
"id": "https://www.grid.ac/institutes/grid.12527.33",
"name": [
"Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, China"
],
"type": "Organization"
},
"familyName": "Zou",
"givenName": "Wenming",
"id": "sg:person.010230600467.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010230600467.31"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00946631",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003157030",
"https://doi.org/10.1007/bf00946631"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.66.056108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005856750"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.66.056108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005856750"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0304-0208(08)70870-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006899297"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03605300600987306",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008404604"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0375-9601(00)00201-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011372923"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0375-9601(00)00201-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011372923"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02100605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011808004",
"https://doi.org/10.1007/bf02100605"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02100605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011808004",
"https://doi.org/10.1007/bf02100605"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01234314",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012055858",
"https://doi.org/10.1007/bf01234314"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01234314",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012055858",
"https://doi.org/10.1007/bf01234314"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-016-0983-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014937579",
"https://doi.org/10.1007/s00526-016-0983-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.20153",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015015980"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/ans-2014-0214",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018402749"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nonrwa.2010.09.023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019297777"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.na.2015.06.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022198507"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4146-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022709270",
"https://doi.org/10.1007/978-1-4612-4146-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4146-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022709270",
"https://doi.org/10.1007/978-1-4612-4146-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-96-01532-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023412132"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00030-016-0355-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032459997",
"https://doi.org/10.1007/s00030-016-0355-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(73)90051-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032792397"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.bulsci.2011.12.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033734076"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1034253103",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-28739-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034253103",
"https://doi.org/10.1007/978-3-319-28739-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-28739-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034253103",
"https://doi.org/10.1007/978-3-319-28739-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00205-014-0747-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035716316",
"https://doi.org/10.1007/s00205-014-0747-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mma.4085",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036318009"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00229-016-0878-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037312848",
"https://doi.org/10.1007/s00229-016-0878-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.anihpc.2013.01.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037469827"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10231-012-0286-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040114015",
"https://doi.org/10.1007/s10231-012-0286-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10231-012-0286-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040114015",
"https://doi.org/10.1007/s10231-012-0286-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jde.2013.10.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040583581"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-2014-05884-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041298495"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/28/4/927",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041314720"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.anihpc.2014.04.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042201428"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-015-0883-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042468792",
"https://doi.org/10.1007/s00526-015-0883-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jde.2011.08.035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043209437"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jde.2005.03.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044451549"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01189950",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045927135",
"https://doi.org/10.1007/bf01189950"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jde.2012.05.023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050969842"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4793990",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051572546"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.na.2013.08.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052848423"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0308210511000746",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054895449"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/cocv/2013068",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056951969"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4835355",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058086801"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/26/2/479",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059110249"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0951-7715/28/6/1937",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059110431"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/apde.2015.8.1165",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069059569"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/dcds.2013.33.2105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071734657"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/jems/456",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072318065"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072320391"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072320923"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/879",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072321225"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/zaa/1547",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072322128"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1084674895",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-88-7642-601-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084674895",
"https://doi.org/10.1007/978-88-7642-601-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s0219199717500547",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1086008606"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-01",
"datePublishedReg": "2019-01-01",
"description": "We study the multiplicity of concentrating solutions to the nonlinear fractional Kirchhoff equation \u03b52sa+\u03b54s-3b\u222bR3|(-\u0394)s2u|2dx(-\u0394)su+V(x)u=f(u)inR3,where \u03b5>0 is a positive parameter, (-\u0394)s is the fractional laplacian with s\u2208(34,1),a,b are positive constants, and V is a positive potential such that inf\u2202\u039bV>inf\u039bV for some open bounded subset \u039b\u2282R3. We relate the number of positive solutions with the topology of the set where V attains its minimum in \u039b. The proof is based on the Ljusternik\u2013Schnirelmann theory.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00229-018-1017-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7194354",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136220",
"issn": [
"0025-2611",
"1432-1785"
],
"name": "manuscripta mathematica",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "158"
}
],
"name": "Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation",
"pagination": "159-203",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"871e25739a8c6a77c25a16f8b18a1e1ad8b0184080be11eac2a8a9004ba27b37"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00229-018-1017-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1101386682"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00229-018-1017-0",
"https://app.dimensions.ai/details/publication/pub.1101386682"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T11:19",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11707_00000002.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00229-018-1017-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1017-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1017-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1017-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00229-018-1017-0'
This table displays all metadata directly associated to this object as RDF triples.
234 TRIPLES
21 PREDICATES
77 URIs
19 LITERALS
7 BLANK NODES