Minkowski content for reachable sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-03

AUTHORS

Piermarco Cannarsa, Marc-Olivier Czarnecki

ABSTRACT

In 1955, Martin Kneser showed that the Minkowski content of a compact p-rectifiable subset M of is equal to its p-Hausdorff measure: We extend his result to the reachable sets of a linear control system and we give an interpretation in terms of a Riemannian distance.

PAGES

507-530

References to SciGraph publications

Journal

TITLE

manuscripta mathematica

ISSUE

3-4

VOLUME

131

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00229-010-0334-8

DOI

http://dx.doi.org/10.1007/s00229-010-0334-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002882623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica 1, 00133, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montpellier", 
          "id": "https://www.grid.ac/institutes/grid.121334.6", 
          "name": [
            "Institut de Math\u00e8matiques et Mod\u00e8lisation de Montpellier, UMR 5149 CNRS, Universit\u00e9 Montpellier 2, place Eug\u00e8ne Bataillon, 34095, Montpellier Cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Czarnecki", 
        "givenName": "Marc-Olivier", 
        "id": "sg:person.012753175273.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753175273.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01900510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004339939", 
          "https://doi.org/10.1007/bf01900510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01900510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004339939", 
          "https://doi.org/10.1007/bf01900510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1959-0110078-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007367944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/cocv:2006002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056952496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2371512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069898229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2371513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069898230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/ifb/131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214443826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459734"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-03", 
    "datePublishedReg": "2010-03-01", 
    "description": "In 1955, Martin Kneser showed that the Minkowski content of a compact p-rectifiable subset M of is equal to its p-Hausdorff measure: We extend his result to the reachable sets of a linear control system and we give an interpretation in terms of a Riemannian distance.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00229-010-0334-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136220", 
        "issn": [
          "0025-2611", 
          "1432-1785"
        ], 
        "name": "manuscripta mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "131"
      }
    ], 
    "name": "Minkowski content for reachable sets", 
    "pagination": "507-530", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0dba4dcf861891977ca55474ab19c71ca14de1bdb98374d9ee82f94902f440ad"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00229-010-0334-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002882623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00229-010-0334-8", 
      "https://app.dimensions.ai/details/publication/pub.1002882623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89786_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00229-010-0334-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00229-010-0334-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00229-010-0334-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00229-010-0334-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00229-010-0334-8'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      20 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00229-010-0334-8 schema:author N810a7f18237a4c08bb4b456227430952
2 schema:citation sg:pub.10.1007/bf01900510
3 https://doi.org/10.1051/cocv:2006002
4 https://doi.org/10.1090/s0002-9947-1959-0110078-1
5 https://doi.org/10.2307/2371512
6 https://doi.org/10.2307/2371513
7 https://doi.org/10.4171/ifb/131
8 https://doi.org/10.4310/jdg/1214443826
9 schema:datePublished 2010-03
10 schema:datePublishedReg 2010-03-01
11 schema:description In 1955, Martin Kneser showed that the Minkowski content of a compact p-rectifiable subset M of is equal to its p-Hausdorff measure: We extend his result to the reachable sets of a linear control system and we give an interpretation in terms of a Riemannian distance.
12 schema:genre research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N285467eae2dd4585a070d50c4208c6a8
16 Ndc15b0779b1443949e302e09b9e0f3d3
17 sg:journal.1136220
18 schema:name Minkowski content for reachable sets
19 schema:pagination 507-530
20 schema:productId N69c0f426789c406b85aabe0d89a25179
21 Na5948bc31585495abdbde0986aaf5cac
22 Ncd894e28938f4323b4794f8f39be1dee
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002882623
24 https://doi.org/10.1007/s00229-010-0334-8
25 schema:sdDatePublished 2019-04-11T09:50
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N4a4e55c2f0ec49119368160ef8a9edf6
28 schema:url http://link.springer.com/10.1007%2Fs00229-010-0334-8
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N285467eae2dd4585a070d50c4208c6a8 schema:issueNumber 3-4
33 rdf:type schema:PublicationIssue
34 N4a4e55c2f0ec49119368160ef8a9edf6 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N69c0f426789c406b85aabe0d89a25179 schema:name dimensions_id
37 schema:value pub.1002882623
38 rdf:type schema:PropertyValue
39 N810a7f18237a4c08bb4b456227430952 rdf:first sg:person.014257010655.09
40 rdf:rest Nef9c7fc5dce1411ab70e905a8892870b
41 Na5948bc31585495abdbde0986aaf5cac schema:name readcube_id
42 schema:value 0dba4dcf861891977ca55474ab19c71ca14de1bdb98374d9ee82f94902f440ad
43 rdf:type schema:PropertyValue
44 Ncd894e28938f4323b4794f8f39be1dee schema:name doi
45 schema:value 10.1007/s00229-010-0334-8
46 rdf:type schema:PropertyValue
47 Ndc15b0779b1443949e302e09b9e0f3d3 schema:volumeNumber 131
48 rdf:type schema:PublicationVolume
49 Nef9c7fc5dce1411ab70e905a8892870b rdf:first sg:person.012753175273.15
50 rdf:rest rdf:nil
51 sg:journal.1136220 schema:issn 0025-2611
52 1432-1785
53 schema:name manuscripta mathematica
54 rdf:type schema:Periodical
55 sg:person.012753175273.15 schema:affiliation https://www.grid.ac/institutes/grid.121334.6
56 schema:familyName Czarnecki
57 schema:givenName Marc-Olivier
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012753175273.15
59 rdf:type schema:Person
60 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
61 schema:familyName Cannarsa
62 schema:givenName Piermarco
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
64 rdf:type schema:Person
65 sg:pub.10.1007/bf01900510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004339939
66 https://doi.org/10.1007/bf01900510
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1051/cocv:2006002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056952496
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1090/s0002-9947-1959-0110078-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007367944
71 rdf:type schema:CreativeWork
72 https://doi.org/10.2307/2371512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898229
73 rdf:type schema:CreativeWork
74 https://doi.org/10.2307/2371513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898230
75 rdf:type schema:CreativeWork
76 https://doi.org/10.4171/ifb/131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317326
77 rdf:type schema:CreativeWork
78 https://doi.org/10.4310/jdg/1214443826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459734
79 rdf:type schema:CreativeWork
80 https://www.grid.ac/institutes/grid.121334.6 schema:alternateName University of Montpellier
81 schema:name Institut de Mathèmatiques et Modèlisation de Montpellier, UMR 5149 CNRS, Université Montpellier 2, place Eugène Bataillon, 34095, Montpellier Cedex 5, France
82 rdf:type schema:Organization
83 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
84 schema:name Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133, Roma, Italy
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...