A pinching theorem for extrinsically symmetric submanifolds of Euclidean space View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12

AUTHORS

Peter Quast

ABSTRACT

We show that a compact connected manifold which can be immersed into ℝm with almost parallel second fundamental form, admits an extrinsically symmetric immersion into ℝm.

PAGES

427-436

References to SciGraph publications

  • 1974-02. Immersions with parallel second fundamental form in MATHEMATISCHE ZEITSCHRIFT
  • 1986. A pinching problem for locally homogeneous spaces in CURVATURE AND TOPOLOGY OF RIEMANNIAN MANIFOLDS
  • 1974-03. Produkt-Zerlegung von Immersionen mit paralleler zweiter Fundamentalform in MATHEMATISCHE ANNALEN
  • 1995-12. Extrinsic symmetric spaces and orbits of s-representations in MANUSCRIPTA MATHEMATICA
  • 1980-02. Symmetric submanifolds of euclidean space in MATHEMATISCHE ANNALEN
  • 1979-02. Symmetric submanifolds of Riemannian manifolds in MATHEMATISCHE ANNALEN
  • Journal

    TITLE

    manuscripta mathematica

    ISSUE

    4

    VOLUME

    115

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00229-004-0501-x

    DOI

    http://dx.doi.org/10.1007/s00229-004-0501-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020637774


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Fribourg", 
              "id": "https://www.grid.ac/institutes/grid.8534.a", 
              "name": [
                "Department of Mathematics, University of Fribourg, 1700, Fribourg, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quast", 
            "givenName": "Peter", 
            "id": "sg:person.0634445707.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02567838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001316791", 
              "https://doi.org/10.1007/bf02567838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02567838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001316791", 
              "https://doi.org/10.1007/bf02567838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010049960", 
              "https://doi.org/10.1007/bf01218650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01218650", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010049960", 
              "https://doi.org/10.1007/bf01218650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0075652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027516197", 
              "https://doi.org/10.1007/bfb0075652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01344137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042991464", 
              "https://doi.org/10.1007/bf01344137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049836584", 
              "https://doi.org/10.1007/bf01359868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01359868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049836584", 
              "https://doi.org/10.1007/bf01359868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01420428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053353578", 
              "https://doi.org/10.1007/bf01420428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01420428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053353578", 
              "https://doi.org/10.1007/bf01420428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/mmono/149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101567925"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2004-12", 
        "datePublishedReg": "2004-12-01", 
        "description": "We show that a compact connected manifold which can be immersed into \u211dm with almost parallel second fundamental form, admits an extrinsically symmetric immersion into \u211dm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00229-004-0501-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136220", 
            "issn": [
              "0025-2611", 
              "1432-1785"
            ], 
            "name": "manuscripta mathematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "115"
          }
        ], 
        "name": "A pinching theorem for extrinsically symmetric submanifolds of Euclidean space", 
        "pagination": "427-436", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "62559ffd8993e028334c61bdce7713274e77f4cfc4e835cbeb54aa08b35513c9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00229-004-0501-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020637774"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00229-004-0501-x", 
          "https://app.dimensions.ai/details/publication/pub.1020637774"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000542.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00229-004-0501-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00229-004-0501-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00229-004-0501-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00229-004-0501-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00229-004-0501-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    80 TRIPLES      20 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00229-004-0501-x schema:author N1c0846e61db4445cbec7c4c74549b26c
    2 schema:citation sg:pub.10.1007/bf01218650
    3 sg:pub.10.1007/bf01344137
    4 sg:pub.10.1007/bf01359868
    5 sg:pub.10.1007/bf01420428
    6 sg:pub.10.1007/bf02567838
    7 sg:pub.10.1007/bfb0075652
    8 https://doi.org/10.1090/mmono/149
    9 schema:datePublished 2004-12
    10 schema:datePublishedReg 2004-12-01
    11 schema:description We show that a compact connected manifold which can be immersed into ℝm with almost parallel second fundamental form, admits an extrinsically symmetric immersion into ℝm.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N09bae204292b4ebb8e46a6722a363332
    16 Ne7a96ebf919f42b883e608d8b17f5802
    17 sg:journal.1136220
    18 schema:name A pinching theorem for extrinsically symmetric submanifolds of Euclidean space
    19 schema:pagination 427-436
    20 schema:productId N0cfd294ec13c4a25a46e93533fb80e56
    21 N7e31b010719e478bb5c9eda4e0a8f528
    22 Nd488e0a8a8fe471894292b76cb23f857
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020637774
    24 https://doi.org/10.1007/s00229-004-0501-x
    25 schema:sdDatePublished 2019-04-10T23:30
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N4189ae5f3e5d438b80cfdbc7f2277102
    28 schema:url http://link.springer.com/10.1007%2Fs00229-004-0501-x
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N09bae204292b4ebb8e46a6722a363332 schema:volumeNumber 115
    33 rdf:type schema:PublicationVolume
    34 N0cfd294ec13c4a25a46e93533fb80e56 schema:name dimensions_id
    35 schema:value pub.1020637774
    36 rdf:type schema:PropertyValue
    37 N1c0846e61db4445cbec7c4c74549b26c rdf:first sg:person.0634445707.95
    38 rdf:rest rdf:nil
    39 N4189ae5f3e5d438b80cfdbc7f2277102 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N7e31b010719e478bb5c9eda4e0a8f528 schema:name doi
    42 schema:value 10.1007/s00229-004-0501-x
    43 rdf:type schema:PropertyValue
    44 Nd488e0a8a8fe471894292b76cb23f857 schema:name readcube_id
    45 schema:value 62559ffd8993e028334c61bdce7713274e77f4cfc4e835cbeb54aa08b35513c9
    46 rdf:type schema:PropertyValue
    47 Ne7a96ebf919f42b883e608d8b17f5802 schema:issueNumber 4
    48 rdf:type schema:PublicationIssue
    49 sg:journal.1136220 schema:issn 0025-2611
    50 1432-1785
    51 schema:name manuscripta mathematica
    52 rdf:type schema:Periodical
    53 sg:person.0634445707.95 schema:affiliation https://www.grid.ac/institutes/grid.8534.a
    54 schema:familyName Quast
    55 schema:givenName Peter
    56 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634445707.95
    57 rdf:type schema:Person
    58 sg:pub.10.1007/bf01218650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010049960
    59 https://doi.org/10.1007/bf01218650
    60 rdf:type schema:CreativeWork
    61 sg:pub.10.1007/bf01344137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042991464
    62 https://doi.org/10.1007/bf01344137
    63 rdf:type schema:CreativeWork
    64 sg:pub.10.1007/bf01359868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049836584
    65 https://doi.org/10.1007/bf01359868
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/bf01420428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053353578
    68 https://doi.org/10.1007/bf01420428
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf02567838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001316791
    71 https://doi.org/10.1007/bf02567838
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bfb0075652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027516197
    74 https://doi.org/10.1007/bfb0075652
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1090/mmono/149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567925
    77 rdf:type schema:CreativeWork
    78 https://www.grid.ac/institutes/grid.8534.a schema:alternateName University of Fribourg
    79 schema:name Department of Mathematics, University of Fribourg, 1700, Fribourg, Switzerland
    80 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...