In vitro studies and in silico predictions of fluconazole and CYP2C9 genetic polymorphism impact on siponimod metabolism and pharmacokinetics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04

AUTHORS

Yi Jin, Hubert Borell, Anne Gardin, Mike Ufer, Felix Huth, Gian Camenisch

ABSTRACT

PURPOSE: The purpose of the study is to investigate the enzyme(s) responsible for siponimod metabolism and to predict the inhibitory effects of fluconazole as well as the impact of cytochrome P450 (CYP) 2C9 genetic polymorphism on siponimod pharmacokinetics (PK) and metabolism. METHODS: In vitro metabolism studies were conducted using human liver microsomes (HLM), and enzyme phenotyping was assessed using a correlation analysis method. SimCYP, a physiologically based PK model, was developed and used to predict the effects of fluconazole and CYP2C9 genetic polymorphism on siponimod metabolism. Primary PK parameters were generated using the SimCYP and WinNonlin software. RESULTS: Correlation analysis suggested that CYP2C9 is the main enzyme responsible for siponimod metabolism in humans. Compared with the CYP2C9*1/*1 genotype, HLM incubations from CYP2C9*3/*3 and CYP2C9*2/*2 donors showed ~ 10- and 3-fold decrease in siponimod metabolism, respectively. Simulations of enzyme contribution predicted that in the CYP2C9*1/*1 genotype, CYP2C9 is predominantly responsible for siponimod metabolism (~ 81%), whereas in the CYP2C9*3/*3 genotype, its contribution is reduced to 11%. The predicted exposure increase of siponimod with fluconazole 200 mg was 2.0-2.4-fold for CYP2C9*1/*1 genotype. In context of single dosing, the predicted mean area under the curve (AUC) is 2.7-, 3.0- and 4.5-fold higher in the CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes, respectively, compared with the CYP2C9*1/*1 genotype. CONCLUSION: .Enzyme phenotyping with correlation analysis confirmed the predominant role of CYP2C9 in the biotransformation of siponimod and demonstrated the functional consequence of CYP2C9 genetic polymorphism on siponimod metabolism. Simulation of fluconazole inhibition closely predicted a 2-fold AUC change (ratio within ~ 20% deviation) to the observed value. In silico simulation predicted a significant reduction in siponimod clearance in the CYP2C9*2/*2 and CYP2C9*3/*3 genotypes based on the in vitro metabolism data; the predicted exposure was close (within 30%) to the observed results for the CYP2C9*2/*3 and CYP2C9*3/*3 genotypes. More... »

PAGES

455-464

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00228-017-2404-2

DOI

http://dx.doi.org/10.1007/s00228-017-2404-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099922651

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29273968


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Azetidines", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Benzyl Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome P-450 CYP2C9", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytochrome P-450 CYP2C9 Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluconazole", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microsomes, Liver", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacogenetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pharmacogenomic Variants", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phenotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novartis (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "PK Sciences, Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 14, 202.3, CH-4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Yi", 
        "id": "sg:person.0757541121.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757541121.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novartis (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "PK Sciences, Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 14, 202.3, CH-4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Borell", 
        "givenName": "Hubert", 
        "id": "sg:person.01062033661.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062033661.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novartis (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "PK Sciences, Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 14, 202.3, CH-4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gardin", 
        "givenName": "Anne", 
        "id": "sg:person.0746041340.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746041340.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novartis (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "PK Sciences, Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 14, 202.3, CH-4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ufer", 
        "givenName": "Mike", 
        "id": "sg:person.0614623553.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614623553.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novartis (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "PK Sciences, Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 14, 202.3, CH-4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huth", 
        "givenName": "Felix", 
        "id": "sg:person.0601142577.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601142577.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novartis (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.419481.1", 
          "name": [
            "PK Sciences, Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 14, 202.3, CH-4002, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camenisch", 
        "givenName": "Gian", 
        "id": "sg:person.0705045165.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705045165.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1046/j.1365-2125.1998.00721.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004018395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2125.1998.00721.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004018395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2004.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006875616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2014.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011389800", 
          "https://doi.org/10.1038/clpt.2014.46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psp4.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013084365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.31.8.1043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016318840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1517/17425250802691074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016364062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pgs.10.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020935714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-pharmtox-010510-100540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021818208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1124/dmd.31.4.345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024748756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.clpt.2004.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033907987", 
          "https://doi.org/10.1016/j.clpt.2004.08.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1476-5381.2012.02061.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043127544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1476-5381.2012.02061.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043127544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpt.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045308302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pharmthera.2007.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050875697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0091270004268128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051961362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e3283349e84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e3283349e84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e3283349e84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079332802", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "PURPOSE: The purpose of the study is to investigate the enzyme(s) responsible for siponimod metabolism and to predict the inhibitory effects of fluconazole as well as the impact of cytochrome P450 (CYP) 2C9 genetic polymorphism on siponimod pharmacokinetics (PK) and metabolism.\nMETHODS: In vitro metabolism studies were conducted using human liver microsomes (HLM), and enzyme phenotyping was assessed using a correlation analysis method. SimCYP, a physiologically based PK model, was developed and used to predict the effects of fluconazole and CYP2C9 genetic polymorphism on siponimod metabolism. Primary PK parameters were generated using the SimCYP and WinNonlin software.\nRESULTS: Correlation analysis suggested that CYP2C9 is the main enzyme responsible for siponimod metabolism in humans. Compared with the CYP2C9*1/*1 genotype, HLM incubations from CYP2C9*3/*3 and CYP2C9*2/*2 donors showed ~\u200910- and 3-fold decrease in siponimod metabolism, respectively. Simulations of enzyme contribution predicted that in the CYP2C9*1/*1 genotype, CYP2C9 is predominantly responsible for siponimod metabolism (~\u200981%), whereas in the CYP2C9*3/*3 genotype, its contribution is reduced to 11%. The predicted exposure increase of siponimod with fluconazole 200\u00a0mg was 2.0-2.4-fold for CYP2C9*1/*1 genotype. In context of single dosing, the predicted mean area under the curve (AUC) is 2.7-, 3.0- and 4.5-fold higher in the CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes, respectively, compared with the CYP2C9*1/*1 genotype.\nCONCLUSION: .Enzyme phenotyping with correlation analysis confirmed the predominant role of CYP2C9 in the biotransformation of siponimod and demonstrated the functional consequence of CYP2C9 genetic polymorphism on siponimod metabolism. Simulation of fluconazole inhibition closely predicted a 2-fold AUC change (ratio within ~\u200920% deviation) to the observed value. In silico simulation predicted a significant reduction in siponimod clearance in the CYP2C9*2/*2 and CYP2C9*3/*3 genotypes based on the in vitro metabolism data; the predicted exposure was close (within 30%) to the observed results for the CYP2C9*2/*3 and CYP2C9*3/*3 genotypes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00228-017-2404-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1054337", 
        "issn": [
          "0031-6970", 
          "1432-1041"
        ], 
        "name": "European Journal of Clinical Pharmacology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "name": "In vitro studies and in silico predictions of fluconazole and CYP2C9 genetic polymorphism impact on siponimod metabolism and pharmacokinetics", 
    "pagination": "455-464", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87f1aac762edb16a60b9dc3e59fbe3bc3bee14837ec47f5629ffcf7b98755634"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29273968"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "1256165"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00228-017-2404-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099922651"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00228-017-2404-2", 
      "https://app.dimensions.ai/details/publication/pub.1099922651"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00228-017-2404-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00228-017-2404-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00228-017-2404-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00228-017-2404-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00228-017-2404-2'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      61 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00228-017-2404-2 schema:about N034cb38a290a432aafc39a17f5759957
2 N038e2a639eeb447183ddcd44bc1e2ca0
3 N23356ea531004f21891d1d2cae41e507
4 N24a641080cab40a2970a876c4fd0ed47
5 N43b6a93890794d0b9a6a365291abd229
6 N45e552c3c26e45fd82228091cc12c948
7 N5a7e086be9884791acdf46c96af9dbb8
8 N83c3173838b4437ebe021788b8870069
9 N8a1d188c5b0c4e9d90e9a0de333eabdf
10 N99ca50b2c5394232b4db6f08f5662cb4
11 N9b419f983a3e43acbed5e7eb26766369
12 Nb087badc028c44d8bb9b6e620780f5d9
13 Nba23e932348244738dd14e3266821aaa
14 Nc8ff4f7353a04ccc9c06f25020445aef
15 Ndc27f2e01c154c1fbe5d569c2e5d4fe5
16 Ne51f67193a454faf96f9c78aaa0c5cc8
17 anzsrc-for:06
18 anzsrc-for:0604
19 schema:author N53f13377a971413992bad9812f83607f
20 schema:citation sg:pub.10.1016/j.clpt.2004.08.009
21 sg:pub.10.1038/clpt.2014.46
22 https://app.dimensions.ai/details/publication/pub.1079332802
23 https://doi.org/10.1002/cpt.37
24 https://doi.org/10.1002/psp4.33
25 https://doi.org/10.1016/j.pharmthera.2007.04.006
26 https://doi.org/10.1016/j.semcdb.2004.05.002
27 https://doi.org/10.1046/j.1365-2125.1998.00721.x
28 https://doi.org/10.1097/fpc.0b013e3283349e84
29 https://doi.org/10.1111/j.1476-5381.2012.02061.x
30 https://doi.org/10.1124/dmd.31.4.345
31 https://doi.org/10.1124/dmd.31.8.1043
32 https://doi.org/10.1146/annurev-pharmtox-010510-100540
33 https://doi.org/10.1177/0091270004268128
34 https://doi.org/10.1517/17425250802691074
35 https://doi.org/10.2217/pgs.10.49
36 schema:datePublished 2018-04
37 schema:datePublishedReg 2018-04-01
38 schema:description PURPOSE: The purpose of the study is to investigate the enzyme(s) responsible for siponimod metabolism and to predict the inhibitory effects of fluconazole as well as the impact of cytochrome P450 (CYP) 2C9 genetic polymorphism on siponimod pharmacokinetics (PK) and metabolism. METHODS: In vitro metabolism studies were conducted using human liver microsomes (HLM), and enzyme phenotyping was assessed using a correlation analysis method. SimCYP, a physiologically based PK model, was developed and used to predict the effects of fluconazole and CYP2C9 genetic polymorphism on siponimod metabolism. Primary PK parameters were generated using the SimCYP and WinNonlin software. RESULTS: Correlation analysis suggested that CYP2C9 is the main enzyme responsible for siponimod metabolism in humans. Compared with the CYP2C9*1/*1 genotype, HLM incubations from CYP2C9*3/*3 and CYP2C9*2/*2 donors showed ~ 10- and 3-fold decrease in siponimod metabolism, respectively. Simulations of enzyme contribution predicted that in the CYP2C9*1/*1 genotype, CYP2C9 is predominantly responsible for siponimod metabolism (~ 81%), whereas in the CYP2C9*3/*3 genotype, its contribution is reduced to 11%. The predicted exposure increase of siponimod with fluconazole 200 mg was 2.0-2.4-fold for CYP2C9*1/*1 genotype. In context of single dosing, the predicted mean area under the curve (AUC) is 2.7-, 3.0- and 4.5-fold higher in the CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes, respectively, compared with the CYP2C9*1/*1 genotype. CONCLUSION: .Enzyme phenotyping with correlation analysis confirmed the predominant role of CYP2C9 in the biotransformation of siponimod and demonstrated the functional consequence of CYP2C9 genetic polymorphism on siponimod metabolism. Simulation of fluconazole inhibition closely predicted a 2-fold AUC change (ratio within ~ 20% deviation) to the observed value. In silico simulation predicted a significant reduction in siponimod clearance in the CYP2C9*2/*2 and CYP2C9*3/*3 genotypes based on the in vitro metabolism data; the predicted exposure was close (within 30%) to the observed results for the CYP2C9*2/*3 and CYP2C9*3/*3 genotypes.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree true
42 schema:isPartOf N3f477bfa5f7745f4bbcf62af5b9a6059
43 Nb45f760cf80a40e781eb9a12cad154ef
44 sg:journal.1054337
45 schema:name In vitro studies and in silico predictions of fluconazole and CYP2C9 genetic polymorphism impact on siponimod metabolism and pharmacokinetics
46 schema:pagination 455-464
47 schema:productId N200e2f672b7a46a582fe672fc5eaa656
48 N35a31b8d61a54f929955ec9b371e0744
49 N8dd3416b39964d3faa0f1e1bb512db3d
50 N98323a6c23e84790a1fdc14d247bd252
51 Nd2767becd67a451e9c25a2a46fa8c64c
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099922651
53 https://doi.org/10.1007/s00228-017-2404-2
54 schema:sdDatePublished 2019-04-11T13:20
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N864edf6ce02c4f4f931a9bfaab518630
57 schema:url https://link.springer.com/10.1007%2Fs00228-017-2404-2
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N034cb38a290a432aafc39a17f5759957 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Fluconazole
63 rdf:type schema:DefinedTerm
64 N038e2a639eeb447183ddcd44bc1e2ca0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Polymorphism, Genetic
66 rdf:type schema:DefinedTerm
67 N13e69ce00b3145d18c867c3e13255882 rdf:first sg:person.0614623553.04
68 rdf:rest Ncf42f890c37240e3abb6334ab096d082
69 N200e2f672b7a46a582fe672fc5eaa656 schema:name doi
70 schema:value 10.1007/s00228-017-2404-2
71 rdf:type schema:PropertyValue
72 N23356ea531004f21891d1d2cae41e507 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Cytochrome P-450 CYP2C9
74 rdf:type schema:DefinedTerm
75 N24a641080cab40a2970a876c4fd0ed47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Phenotype
77 rdf:type schema:DefinedTerm
78 N35a31b8d61a54f929955ec9b371e0744 schema:name pubmed_id
79 schema:value 29273968
80 rdf:type schema:PropertyValue
81 N3f477bfa5f7745f4bbcf62af5b9a6059 schema:issueNumber 4
82 rdf:type schema:PublicationIssue
83 N43b6a93890794d0b9a6a365291abd229 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Pharmacogenomic Variants
85 rdf:type schema:DefinedTerm
86 N45e552c3c26e45fd82228091cc12c948 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Microsomes, Liver
88 rdf:type schema:DefinedTerm
89 N48f090a0c066421eaabbe864132a10fd rdf:first sg:person.0746041340.65
90 rdf:rest N13e69ce00b3145d18c867c3e13255882
91 N53f13377a971413992bad9812f83607f rdf:first sg:person.0757541121.27
92 rdf:rest N8f71084bbccb4d1894ffc67d5f7a212d
93 N5a7e086be9884791acdf46c96af9dbb8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Benzyl Compounds
95 rdf:type schema:DefinedTerm
96 N83c3173838b4437ebe021788b8870069 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Azetidines
98 rdf:type schema:DefinedTerm
99 N864edf6ce02c4f4f931a9bfaab518630 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N8a1d188c5b0c4e9d90e9a0de333eabdf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Drug Interactions
103 rdf:type schema:DefinedTerm
104 N8dd3416b39964d3faa0f1e1bb512db3d schema:name readcube_id
105 schema:value 87f1aac762edb16a60b9dc3e59fbe3bc3bee14837ec47f5629ffcf7b98755634
106 rdf:type schema:PropertyValue
107 N8f71084bbccb4d1894ffc67d5f7a212d rdf:first sg:person.01062033661.54
108 rdf:rest N48f090a0c066421eaabbe864132a10fd
109 N98323a6c23e84790a1fdc14d247bd252 schema:name nlm_unique_id
110 schema:value 1256165
111 rdf:type schema:PropertyValue
112 N99ca50b2c5394232b4db6f08f5662cb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Models, Biological
114 rdf:type schema:DefinedTerm
115 N9b419f983a3e43acbed5e7eb26766369 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Software
117 rdf:type schema:DefinedTerm
118 Nb087badc028c44d8bb9b6e620780f5d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Computer Simulation
120 rdf:type schema:DefinedTerm
121 Nb45f760cf80a40e781eb9a12cad154ef schema:volumeNumber 74
122 rdf:type schema:PublicationVolume
123 Nba23e932348244738dd14e3266821aaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Genotype
125 rdf:type schema:DefinedTerm
126 Nc8ff4f7353a04ccc9c06f25020445aef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Pharmacogenetics
128 rdf:type schema:DefinedTerm
129 Ncb9939299f344f32847a6ced72217023 rdf:first sg:person.0705045165.96
130 rdf:rest rdf:nil
131 Ncf42f890c37240e3abb6334ab096d082 rdf:first sg:person.0601142577.72
132 rdf:rest Ncb9939299f344f32847a6ced72217023
133 Nd2767becd67a451e9c25a2a46fa8c64c schema:name dimensions_id
134 schema:value pub.1099922651
135 rdf:type schema:PropertyValue
136 Ndc27f2e01c154c1fbe5d569c2e5d4fe5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Cytochrome P-450 CYP2C9 Inhibitors
138 rdf:type schema:DefinedTerm
139 Ne51f67193a454faf96f9c78aaa0c5cc8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
143 schema:name Biological Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
146 schema:name Genetics
147 rdf:type schema:DefinedTerm
148 sg:journal.1054337 schema:issn 0031-6970
149 1432-1041
150 schema:name European Journal of Clinical Pharmacology
151 rdf:type schema:Periodical
152 sg:person.01062033661.54 schema:affiliation https://www.grid.ac/institutes/grid.419481.1
153 schema:familyName Borell
154 schema:givenName Hubert
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062033661.54
156 rdf:type schema:Person
157 sg:person.0601142577.72 schema:affiliation https://www.grid.ac/institutes/grid.419481.1
158 schema:familyName Huth
159 schema:givenName Felix
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601142577.72
161 rdf:type schema:Person
162 sg:person.0614623553.04 schema:affiliation https://www.grid.ac/institutes/grid.419481.1
163 schema:familyName Ufer
164 schema:givenName Mike
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614623553.04
166 rdf:type schema:Person
167 sg:person.0705045165.96 schema:affiliation https://www.grid.ac/institutes/grid.419481.1
168 schema:familyName Camenisch
169 schema:givenName Gian
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705045165.96
171 rdf:type schema:Person
172 sg:person.0746041340.65 schema:affiliation https://www.grid.ac/institutes/grid.419481.1
173 schema:familyName Gardin
174 schema:givenName Anne
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746041340.65
176 rdf:type schema:Person
177 sg:person.0757541121.27 schema:affiliation https://www.grid.ac/institutes/grid.419481.1
178 schema:familyName Jin
179 schema:givenName Yi
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757541121.27
181 rdf:type schema:Person
182 sg:pub.10.1016/j.clpt.2004.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033907987
183 https://doi.org/10.1016/j.clpt.2004.08.009
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/clpt.2014.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011389800
186 https://doi.org/10.1038/clpt.2014.46
187 rdf:type schema:CreativeWork
188 https://app.dimensions.ai/details/publication/pub.1079332802 schema:CreativeWork
189 https://doi.org/10.1002/cpt.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045308302
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1002/psp4.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013084365
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.pharmthera.2007.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050875697
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.semcdb.2004.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006875616
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1046/j.1365-2125.1998.00721.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004018395
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/fpc.0b013e3283349e84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060340789
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.1476-5381.2012.02061.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043127544
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1124/dmd.31.4.345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024748756
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1124/dmd.31.8.1043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016318840
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1146/annurev-pharmtox-010510-100540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021818208
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1177/0091270004268128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051961362
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1517/17425250802691074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016364062
212 rdf:type schema:CreativeWork
213 https://doi.org/10.2217/pgs.10.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020935714
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.419481.1 schema:alternateName Novartis (Switzerland)
216 schema:name PK Sciences, Novartis Institutes for Biomedical Research (NIBR), Fabrikstrasse 14, 202.3, CH-4002, Basel, Switzerland
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...