Influence of real-time Bayesian forecasting of pharmacokinetic parameters on the precision of a rocuronium target-controlled infusion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02-19

AUTHORS

Cyrus Motamed, Jean-Michel Devys, Bertrand Debaene, Valérie Billard

ABSTRACT

IntroductionBayesian forecasting has been shown to improve the accuracy of pharmacokinetic/pharmacodynamic (PK/PD) models by adding measured values to a population model. It could be done in real time for neuromuscular blockers (NMB) using measured values of effect. This study was designed to assess feasibility and benefit of Bayesian forecasting during a rocuronium target-controlled infusion (TCI).MethodsAfter internal review board (IRB) approval and informed consent, 21 women scheduled for breast plastic surgery were included. Anesthesia was maintained with propofol, alfentanil, and controlled ventilation through a laryngeal mask. Rocuronium was delivered in TCI with Stanpump software and the Plaud population model. The target effect was 50% blockade until insertion of breast prosthesis; thereafter it was set to 0%. Response to train of four (TOF) at adductor pollicis was recorded using a force transducer. In ten patients, drug delivery was based on the population model. In the others, repeated measures values were entered in the software, and the PK model was adjusted to minimize the error in predicted effect. Model precision was compared between groups using mean prediction error and mean absolute prediction error.ResultsAt target 50%, model accuracy was not improved with Bayesian adjustments; conversely, post-infusion errors were significantly decreased. The first two measures had the most influence on the model changes.DiscussionBelow clinical utility, such adjustments may be used to explore cofactors influencing interindividual and intraindividual variability in NMB dose-response relationship. Similar tools may also be developed for drugs in which a quantitative effect is available, such as electroencephalography (EEG) for hypnotics.ImplicationReal-time Bayesian forecasting combining measured values of effect with a population model is suitable to guide NMB-agent delivery using Stanpump software. More... »

PAGES

1025-1031

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00228-012-1236-3

DOI

http://dx.doi.org/10.1007/s00228-012-1236-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053459010

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22349465


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Androstanols", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bayes Theorem", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Drug", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Delivery Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infusion Pumps", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infusions, Intravenous", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monitoring, Intraoperative", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromuscular Monitoring", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neuromuscular Nondepolarizing Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rocuronium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France", 
          "id": "http://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Motamed", 
        "givenName": "Cyrus", 
        "id": "sg:person.0630540115.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630540115.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France", 
          "id": "http://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Devys", 
        "givenName": "Jean-Michel", 
        "id": "sg:person.01053442664.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053442664.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesia and Intensive Care CHU, Inserm Unit\u00e9 1070, Universit\u00e9 de Poitiers France, Poitiers, France", 
          "id": "http://www.grid.ac/institutes/grid.11166.31", 
          "name": [
            "Department of Anesthesia and Intensive Care CHU, Inserm Unit\u00e9 1070, Universit\u00e9 de Poitiers France, Poitiers, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Debaene", 
        "givenName": "Bertrand", 
        "id": "sg:person.01035262125.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035262125.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France", 
          "id": "http://www.grid.ac/institutes/grid.14925.3b", 
          "name": [
            "Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Billard", 
        "givenName": "Val\u00e9rie", 
        "id": "sg:person.01337113136.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337113136.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01061662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050869559", 
          "https://doi.org/10.1007/bf01061662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2165/00003088-199631050-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024751674", 
          "https://doi.org/10.2165/00003088-199631050-00001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/0009-9236(95)90196-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004181753", 
          "https://doi.org/10.1016/0009-9236(95)90196-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03024862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025199718", 
          "https://doi.org/10.1007/bf03024862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00228-008-0485-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034468871", 
          "https://doi.org/10.1007/s00228-008-0485-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02-19", 
    "datePublishedReg": "2012-02-19", 
    "description": "IntroductionBayesian forecasting has been shown to improve the accuracy of pharmacokinetic/pharmacodynamic (PK/PD) models by adding measured values to a population model. It could be done in real time for neuromuscular blockers (NMB) using measured values of effect. This study was designed to assess feasibility and benefit of Bayesian forecasting during a rocuronium target-controlled infusion (TCI).MethodsAfter internal review board (IRB) approval and informed consent, 21 women scheduled for breast plastic surgery were included. Anesthesia was maintained with propofol, alfentanil, and controlled ventilation through a laryngeal mask. Rocuronium was delivered in TCI with Stanpump software and the Plaud population model. The target effect was 50% blockade until insertion of breast prosthesis; thereafter it was set to 0%. Response to train of four (TOF) at adductor pollicis was recorded using a force transducer. In ten patients, drug delivery was based on the population model. In the others, repeated measures values were entered in the software, and the PK model was adjusted to minimize the error in predicted effect. Model precision was compared between groups using mean prediction error and mean absolute prediction error.ResultsAt target 50%, model accuracy was not improved with Bayesian adjustments; conversely, post-infusion errors were significantly decreased. The first two measures had the most influence on the model changes.DiscussionBelow clinical utility, such adjustments may be used to explore cofactors influencing interindividual and intraindividual variability in NMB dose-response relationship. Similar tools may also be developed for drugs in which a quantitative effect is available, such as electroencephalography (EEG) for hypnotics.ImplicationReal-time Bayesian forecasting combining measured values of effect with a population model is suitable to guide NMB-agent delivery using Stanpump software.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00228-012-1236-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1054337", 
        "issn": [
          "0031-6970", 
          "1432-1041"
        ], 
        "name": "European Journal of Clinical Pharmacology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "keywords": [
      "target-controlled infusion", 
      "neuromuscular blockers", 
      "internal review board approval", 
      "review board approval", 
      "dose-response relationship", 
      "laryngeal mask", 
      "adductor pollicis", 
      "breast plastic surgery", 
      "clinical utility", 
      "board approval", 
      "pharmacokinetic parameters", 
      "pharmacodynamic model", 
      "PK model", 
      "breast prostheses", 
      "Bayesian forecasting", 
      "informed consent", 
      "plastic surgery", 
      "intraindividual variability", 
      "infusion", 
      "target effects", 
      "absolute prediction error", 
      "force transducer", 
      "target 50", 
      "mean prediction error", 
      "electroencephalography", 
      "delivery", 
      "rocuronium", 
      "pollicis", 
      "surgery", 
      "propofol", 
      "alfentanil", 
      "patients", 
      "anesthesia", 
      "hypnotics", 
      "blockers", 
      "blockade", 
      "drug delivery", 
      "women", 
      "Bayesian adjustment", 
      "ventilation", 
      "drugs", 
      "adjustment", 
      "effect", 
      "prosthesis", 
      "consent", 
      "approval", 
      "group", 
      "response", 
      "study", 
      "benefits", 
      "insertion", 
      "measures", 
      "such adjustments", 
      "quantitative effects", 
      "utility", 
      "values", 
      "changes", 
      "value of effect", 
      "cofactor", 
      "model", 
      "feasibility", 
      "relationship", 
      "time", 
      "influence", 
      "variability", 
      "transducer", 
      "population model", 
      "most influence", 
      "mask", 
      "tool", 
      "train", 
      "similar tools", 
      "accuracy", 
      "software", 
      "parameters", 
      "prediction error", 
      "precision", 
      "error", 
      "real time", 
      "measured values", 
      "model changes", 
      "measure values", 
      "model accuracy", 
      "model precision", 
      "forecasting", 
      "IntroductionBayesian forecasting", 
      "rocuronium target-controlled infusion", 
      "MethodsAfter internal review board (IRB) approval", 
      "Stanpump software", 
      "Plaud population model", 
      "ResultsAt target 50", 
      "post-infusion errors", 
      "DiscussionBelow clinical utility", 
      "NMB dose-response relationship", 
      "ImplicationReal-time Bayesian forecasting", 
      "NMB-agent delivery", 
      "real-time Bayesian forecasting"
    ], 
    "name": "Influence of real-time Bayesian forecasting of pharmacokinetic parameters on the precision of a rocuronium target-controlled infusion", 
    "pagination": "1025-1031", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053459010"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00228-012-1236-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22349465"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00228-012-1236-3", 
      "https://app.dimensions.ai/details/publication/pub.1053459010"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_576.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00228-012-1236-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00228-012-1236-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00228-012-1236-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00228-012-1236-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00228-012-1236-3'


 

This table displays all metadata directly associated to this object as RDF triples.

275 TRIPLES      22 PREDICATES      146 URIs      133 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00228-012-1236-3 schema:about N001af657ebc941e7a038ec1f132c8437
2 N02a15f605dbd479da07dc732737b1d12
3 N07038a61664a4443b157f4090c92d2ea
4 N0b7751600c8f4e3f9f7557bc361e0d15
5 N0d14adf7a8c042f78df1fa1d49727fc1
6 N0f5d46a383d84abdad53a0508a47afe5
7 N225c5024435346f5915a346bd23f54da
8 N47b03b42dc0f47fea3ad491a4622e927
9 N6c15a3afcf6542429f237f5e653b9024
10 N742ae676409c45d6acb4c33ac6515cb2
11 N7b705a6303f544d7b7dfbdaf67dc6a31
12 N805c3aa5f19641cfa023d2e7b5e4bf18
13 N8691745397354cb592ba16063fa138e9
14 N8a9f89b295c84520b992f4e7daef8001
15 Na8d2ea80461e437eba5c9c87121b9139
16 Nb4d82f6211f54a4eb7a1b504fa302d5e
17 Nd262799746fe4f9097f78684391fc695
18 Nf1609d12dc164cfb8d49cb51aaabdd6b
19 anzsrc-for:11
20 anzsrc-for:1115
21 schema:author N3f41a1b4c8e54816bbe6f13591ffc67c
22 schema:citation sg:pub.10.1007/bf01061662
23 sg:pub.10.1007/bf03024862
24 sg:pub.10.1007/s00228-008-0485-7
25 sg:pub.10.1016/0009-9236(95)90196-5
26 sg:pub.10.2165/00003088-199631050-00001
27 schema:datePublished 2012-02-19
28 schema:datePublishedReg 2012-02-19
29 schema:description IntroductionBayesian forecasting has been shown to improve the accuracy of pharmacokinetic/pharmacodynamic (PK/PD) models by adding measured values to a population model. It could be done in real time for neuromuscular blockers (NMB) using measured values of effect. This study was designed to assess feasibility and benefit of Bayesian forecasting during a rocuronium target-controlled infusion (TCI).MethodsAfter internal review board (IRB) approval and informed consent, 21 women scheduled for breast plastic surgery were included. Anesthesia was maintained with propofol, alfentanil, and controlled ventilation through a laryngeal mask. Rocuronium was delivered in TCI with Stanpump software and the Plaud population model. The target effect was 50% blockade until insertion of breast prosthesis; thereafter it was set to 0%. Response to train of four (TOF) at adductor pollicis was recorded using a force transducer. In ten patients, drug delivery was based on the population model. In the others, repeated measures values were entered in the software, and the PK model was adjusted to minimize the error in predicted effect. Model precision was compared between groups using mean prediction error and mean absolute prediction error.ResultsAt target 50%, model accuracy was not improved with Bayesian adjustments; conversely, post-infusion errors were significantly decreased. The first two measures had the most influence on the model changes.DiscussionBelow clinical utility, such adjustments may be used to explore cofactors influencing interindividual and intraindividual variability in NMB dose-response relationship. Similar tools may also be developed for drugs in which a quantitative effect is available, such as electroencephalography (EEG) for hypnotics.ImplicationReal-time Bayesian forecasting combining measured values of effect with a population model is suitable to guide NMB-agent delivery using Stanpump software.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N09fde4d9c87744389c639e6ed8814a70
34 N1b196c70c73e443ca180f3d1ebeaab2b
35 sg:journal.1054337
36 schema:keywords Bayesian adjustment
37 Bayesian forecasting
38 DiscussionBelow clinical utility
39 ImplicationReal-time Bayesian forecasting
40 IntroductionBayesian forecasting
41 MethodsAfter internal review board (IRB) approval
42 NMB dose-response relationship
43 NMB-agent delivery
44 PK model
45 Plaud population model
46 ResultsAt target 50
47 Stanpump software
48 absolute prediction error
49 accuracy
50 adductor pollicis
51 adjustment
52 alfentanil
53 anesthesia
54 approval
55 benefits
56 blockade
57 blockers
58 board approval
59 breast plastic surgery
60 breast prostheses
61 changes
62 clinical utility
63 cofactor
64 consent
65 delivery
66 dose-response relationship
67 drug delivery
68 drugs
69 effect
70 electroencephalography
71 error
72 feasibility
73 force transducer
74 forecasting
75 group
76 hypnotics
77 influence
78 informed consent
79 infusion
80 insertion
81 internal review board approval
82 intraindividual variability
83 laryngeal mask
84 mask
85 mean prediction error
86 measure values
87 measured values
88 measures
89 model
90 model accuracy
91 model changes
92 model precision
93 most influence
94 neuromuscular blockers
95 parameters
96 patients
97 pharmacodynamic model
98 pharmacokinetic parameters
99 plastic surgery
100 pollicis
101 population model
102 post-infusion errors
103 precision
104 prediction error
105 propofol
106 prosthesis
107 quantitative effects
108 real time
109 real-time Bayesian forecasting
110 relationship
111 response
112 review board approval
113 rocuronium
114 rocuronium target-controlled infusion
115 similar tools
116 software
117 study
118 such adjustments
119 surgery
120 target 50
121 target effects
122 target-controlled infusion
123 time
124 tool
125 train
126 transducer
127 utility
128 value of effect
129 values
130 variability
131 ventilation
132 women
133 schema:name Influence of real-time Bayesian forecasting of pharmacokinetic parameters on the precision of a rocuronium target-controlled infusion
134 schema:pagination 1025-1031
135 schema:productId N4d38c498e8fc429daeeb6938051608f6
136 Nc5d5f71767874573be2cffb8ee4ddb0f
137 Nd0cca5e44d49489ab15781caf46319f6
138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053459010
139 https://doi.org/10.1007/s00228-012-1236-3
140 schema:sdDatePublished 2022-01-01T18:28
141 schema:sdLicense https://scigraph.springernature.com/explorer/license/
142 schema:sdPublisher N7f3047b78d7b44c18bd2a8adf36fff8a
143 schema:url https://doi.org/10.1007/s00228-012-1236-3
144 sgo:license sg:explorer/license/
145 sgo:sdDataset articles
146 rdf:type schema:ScholarlyArticle
147 N001af657ebc941e7a038ec1f132c8437 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Middle Aged
149 rdf:type schema:DefinedTerm
150 N02a15f605dbd479da07dc732737b1d12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Time Factors
152 rdf:type schema:DefinedTerm
153 N07038a61664a4443b157f4090c92d2ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Neuromuscular Nondepolarizing Agents
155 rdf:type schema:DefinedTerm
156 N09fde4d9c87744389c639e6ed8814a70 schema:volumeNumber 68
157 rdf:type schema:PublicationVolume
158 N0b7751600c8f4e3f9f7557bc361e0d15 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Infusions, Intravenous
160 rdf:type schema:DefinedTerm
161 N0d14adf7a8c042f78df1fa1d49727fc1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Models, Biological
163 rdf:type schema:DefinedTerm
164 N0f5d46a383d84abdad53a0508a47afe5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Algorithms
166 rdf:type schema:DefinedTerm
167 N1b196c70c73e443ca180f3d1ebeaab2b schema:issueNumber 7
168 rdf:type schema:PublicationIssue
169 N225c5024435346f5915a346bd23f54da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Androstanols
171 rdf:type schema:DefinedTerm
172 N3f41a1b4c8e54816bbe6f13591ffc67c rdf:first sg:person.0630540115.48
173 rdf:rest N7d41010073ce43b89a0b4bf024fa7499
174 N47b03b42dc0f47fea3ad491a4622e927 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Female
176 rdf:type schema:DefinedTerm
177 N4d38c498e8fc429daeeb6938051608f6 schema:name doi
178 schema:value 10.1007/s00228-012-1236-3
179 rdf:type schema:PropertyValue
180 N6c15a3afcf6542429f237f5e653b9024 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Bayes Theorem
182 rdf:type schema:DefinedTerm
183 N742ae676409c45d6acb4c33ac6515cb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Neuromuscular Monitoring
185 rdf:type schema:DefinedTerm
186 N7b705a6303f544d7b7dfbdaf67dc6a31 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Rocuronium
188 rdf:type schema:DefinedTerm
189 N7d41010073ce43b89a0b4bf024fa7499 rdf:first sg:person.01053442664.45
190 rdf:rest Nac0999ba36644d3c96df037967fe092e
191 N7f3047b78d7b44c18bd2a8adf36fff8a schema:name Springer Nature - SN SciGraph project
192 rdf:type schema:Organization
193 N805c3aa5f19641cfa023d2e7b5e4bf18 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Software
195 rdf:type schema:DefinedTerm
196 N8691745397354cb592ba16063fa138e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Monitoring, Intraoperative
198 rdf:type schema:DefinedTerm
199 N8a9f89b295c84520b992f4e7daef8001 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Humans
201 rdf:type schema:DefinedTerm
202 Na8d2ea80461e437eba5c9c87121b9139 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Prospective Studies
204 rdf:type schema:DefinedTerm
205 Nac0999ba36644d3c96df037967fe092e rdf:first sg:person.01035262125.07
206 rdf:rest Ne3cec96ccd124e118902a92c103de06d
207 Nb4d82f6211f54a4eb7a1b504fa302d5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Drug Delivery Systems
209 rdf:type schema:DefinedTerm
210 Nc5d5f71767874573be2cffb8ee4ddb0f schema:name pubmed_id
211 schema:value 22349465
212 rdf:type schema:PropertyValue
213 Nd0cca5e44d49489ab15781caf46319f6 schema:name dimensions_id
214 schema:value pub.1053459010
215 rdf:type schema:PropertyValue
216 Nd262799746fe4f9097f78684391fc695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
217 schema:name Dose-Response Relationship, Drug
218 rdf:type schema:DefinedTerm
219 Ne3cec96ccd124e118902a92c103de06d rdf:first sg:person.01337113136.18
220 rdf:rest rdf:nil
221 Nf1609d12dc164cfb8d49cb51aaabdd6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Infusion Pumps
223 rdf:type schema:DefinedTerm
224 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
225 schema:name Medical and Health Sciences
226 rdf:type schema:DefinedTerm
227 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
228 schema:name Pharmacology and Pharmaceutical Sciences
229 rdf:type schema:DefinedTerm
230 sg:journal.1054337 schema:issn 0031-6970
231 1432-1041
232 schema:name European Journal of Clinical Pharmacology
233 schema:publisher Springer Nature
234 rdf:type schema:Periodical
235 sg:person.01035262125.07 schema:affiliation grid-institutes:grid.11166.31
236 schema:familyName Debaene
237 schema:givenName Bertrand
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035262125.07
239 rdf:type schema:Person
240 sg:person.01053442664.45 schema:affiliation grid-institutes:grid.14925.3b
241 schema:familyName Devys
242 schema:givenName Jean-Michel
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053442664.45
244 rdf:type schema:Person
245 sg:person.01337113136.18 schema:affiliation grid-institutes:grid.14925.3b
246 schema:familyName Billard
247 schema:givenName Valérie
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337113136.18
249 rdf:type schema:Person
250 sg:person.0630540115.48 schema:affiliation grid-institutes:grid.14925.3b
251 schema:familyName Motamed
252 schema:givenName Cyrus
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630540115.48
254 rdf:type schema:Person
255 sg:pub.10.1007/bf01061662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050869559
256 https://doi.org/10.1007/bf01061662
257 rdf:type schema:CreativeWork
258 sg:pub.10.1007/bf03024862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025199718
259 https://doi.org/10.1007/bf03024862
260 rdf:type schema:CreativeWork
261 sg:pub.10.1007/s00228-008-0485-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034468871
262 https://doi.org/10.1007/s00228-008-0485-7
263 rdf:type schema:CreativeWork
264 sg:pub.10.1016/0009-9236(95)90196-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004181753
265 https://doi.org/10.1016/0009-9236(95)90196-5
266 rdf:type schema:CreativeWork
267 sg:pub.10.2165/00003088-199631050-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024751674
268 https://doi.org/10.2165/00003088-199631050-00001
269 rdf:type schema:CreativeWork
270 grid-institutes:grid.11166.31 schema:alternateName Department of Anesthesia and Intensive Care CHU, Inserm Unité 1070, Université de Poitiers France, Poitiers, France
271 schema:name Department of Anesthesia and Intensive Care CHU, Inserm Unité 1070, Université de Poitiers France, Poitiers, France
272 rdf:type schema:Organization
273 grid-institutes:grid.14925.3b schema:alternateName Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France
274 schema:name Department of Anesthesiology, Gustave Roussy Institute, Villejuif, France
275 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...