Mechanical properties of Japanese black pine (Pinus thunbergii Parl.) planted on coastal sand dunes: resistance to uprooting and stem breakage ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Kazuki Nanko, Satoru Suzuki, Hironori Noguchi, Yoji Ishida, Delphis F. Levia, Akira Ogura, Hiroaki Hagino, Hiroshi Matsumoto, Hiromi Takimoto, Tomoki Sakamoto

ABSTRACT

Given that Japanese black pine trees (Pinus thunbergii Parl.) are predominant in the coastal forests of Japan and are part of the defence structure against tsunamis, the quantification of their resistance to tree damage is necessary. The resistance of Japanese black pine to uprooting and stem breakage and its bending properties were estimated by a tree-pulling test and bending test of green logs in conjunction with the published literature. A general equation to estimate the critical turning moment for uprooting was developed using diameter at breast height and tree height as predictor variables. For moduli of elasticity and rupture of stems (MOE and MOR), medians [5th and 95th percentile values] were 5.41 [3.78, 6.82] GPa and 35.0 [28.7, 41.8] MPa, respectively. With the obtained critical turning moment and MOR, the critical tsunami water depth was estimated by numerical simulations using modelled trees. The numerical simulations revealed that Japanese black pine trees on coastal sand dunes tended to be more vulnerable to uprooting than stem breakage, with taller and more slender trees showing less resistance to stem breakage. The results on the mechanical properties of Japanese black pine are of use to those in the wood science community as well as coastal managers who need to know the mechanical strength of Japanese black pine to help evaluate their resistance against tsunamis. More... »

PAGES

469-489

References to SciGraph publications

  • 2013-03. Temperature as a potent driver of regional forest drought stress and tree mortality in NATURE CLIMATE CHANGE
  • 2004-07. Root anchorage of inner and edge trees in stands of Maritime pine (Pinus pinaster Ait.) growing in different podzolic soil conditions in TREES
  • 2013-02. Strength properties and effect of moisture content on the bending and compressive strength parallel to the grain of sugi (Cryptomeria japonica) round timber in JOURNAL OF WOOD SCIENCE
  • 2007-07. The Indian Ocean tsunami of December 26, 2004: observations in Sri Lanka and Thailand in NATURAL HAZARDS
  • 2000-08. The effect of temperature on mechanical properties of standing lodgepole pine trees in TREES
  • 1986-09. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees in OECOLOGIA
  • 2003-10. Mitigation Lessons from the July 17, 1998 Papua New Guinea Tsunami in PURE AND APPLIED GEOPHYSICS
  • 2013-01. Breaking pattern and critical breaking condition of Japanese pine trees on coastal sand dunes in huge tsunami caused by Great East Japan Earthquake in NATURAL HAZARDS
  • 2016-07. Wood quality in complex forests versus even-aged monocultures: review and perspectives in WOOD SCIENCE AND TECHNOLOGY
  • 2016-10. Wind damage risk estimation for strip cutting under current and future wind conditions based on moment observations in a coastal forest in Japan in JOURNAL OF FOREST RESEARCH
  • 2010-12. Relating mechanical strength at the stem level to values obtained from defect-free wood samples in TREES
  • 2012-01. Root anchorage of hinoki (Chamaecyparis obtuse (Sieb. Et Zucc.) Endl.) under the combined loading of wind and rapidly supplied water on soil: analyses based on tree-pulling experiments in EUROPEAN JOURNAL OF FOREST RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00226-019-01078-z

    DOI

    http://dx.doi.org/10.1007/s00226-019-01078-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112158327


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Forestry Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Agricultural and Veterinary Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Forestry and Forest Products Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.417935.d", 
              "name": [
                "Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, 305-8687, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nanko", 
            "givenName": "Kazuki", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Forestry and Forest Products Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.417935.d", 
              "name": [
                "Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, 305-8687, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suzuki", 
            "givenName": "Satoru", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Forestry and Forest Products Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.417935.d", 
              "name": [
                "Tohoku Research Center, Forestry and Forest Products Research Institute, 020-0123, Morioka, Iwate, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noguchi", 
            "givenName": "Hironori", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Ishikawa Agricultural and Forestry Research Center, Forestry Experiment Station, 920-2114, Hakusan, Ishikawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ishida", 
            "givenName": "Yoji", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Delaware", 
              "id": "https://www.grid.ac/institutes/grid.33489.35", 
              "name": [
                "Department of Geography, University of Delaware, 19716-2541, Newark, DE, USA", 
                "Department of Plant and Soil Sciences, University of Delaware, 19716-2170, Newark, DE, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levia", 
            "givenName": "Delphis F.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Kenou General Agriculture Forestry Office Ishikawa Prefecture, 920-8204, Kanazawa, Ishikawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ogura", 
            "givenName": "Akira", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Forestry and Forest Products Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.417935.d", 
              "name": [
                "Tohoku Research Center, Forestry and Forest Products Research Institute, 020-0123, Morioka, Iwate, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hagino", 
            "givenName": "Hiroaki", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Ishikawa Agricultural and Forestry Research Center, Forestry Experiment Station, 920-2114, Hakusan, Ishikawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Matsumoto", 
            "givenName": "Hiroshi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Minamikaga General Agriculture Forestry Office Ishikawa Prefecture, 923-0801, Komatsu, Ishikawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takimoto", 
            "givenName": "Hiromi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Forestry and Forest Products Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.417935.d", 
              "name": [
                "Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, 305-8687, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakamoto", 
            "givenName": "Tomoki", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nclimate1693", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000006981", 
              "https://doi.org/10.1038/nclimate1693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foreco.2004.07.072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001002756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/treephys/3.4.365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002168473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/x90-165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005130164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7211/jjsrt.41.308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005738944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/treephys/5.3.307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006383161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/forestry/cps080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007461280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/forestry/cpn015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010263687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4005/jjfs.93.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010884578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2208/kaigan.69.i_361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011931941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/x99-029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011993247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/x05-157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017031976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/x05-157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017031976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-1127(00)00300-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017403354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-003-2417-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018992905", 
              "https://doi.org/10.1007/s00024-003-2417-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00468-004-0330-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021235203", 
              "https://doi.org/10.1007/s00468-004-0330-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10086-012-1297-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024371872", 
              "https://doi.org/10.1007/s10086-012-1297-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4005/jjfs.96.206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024609799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00468-010-0485-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024746663", 
              "https://doi.org/10.1007/s00468-010-0485-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00468-010-0485-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024746663", 
              "https://doi.org/10.1007/s00468-010-0485-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10342-011-0508-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024985239", 
              "https://doi.org/10.1007/s10342-011-0508-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2208/prohe.49.859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026667104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004680000065", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026703213", 
              "https://doi.org/10.1007/s004680000065"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0304-3800(00)00220-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027812208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/2015rg000481", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029386685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00226-016-0827-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037695245", 
              "https://doi.org/10.1007/s00226-016-0827-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plantsci.2016.01.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038720123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-1127(00)00306-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039247708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/x06-072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042779041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10310-016-0539-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043897090", 
              "https://doi.org/10.1007/s10310-016-0539-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10310-016-0539-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043897090", 
              "https://doi.org/10.1007/s10310-016-0539-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-012-0373-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045835386", 
              "https://doi.org/10.1007/s11069-012-0373-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1139/cjfr-2013-0150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051019326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-006-9064-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052304326", 
              "https://doi.org/10.1007/s11069-006-9064-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00379254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053134893", 
              "https://doi.org/10.1007/bf00379254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00379254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053134893", 
              "https://doi.org/10.1007/bf00379254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcw059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059395320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/forestry/59.2.173", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059589658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1118387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062452641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3543410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070365603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2482410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102611741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2996665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1102613862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/05785634.1987.11924470", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103490830"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03", 
        "datePublishedReg": "2019-03-01", 
        "description": "Given that Japanese black pine trees (Pinus thunbergii Parl.) are predominant in the coastal forests of Japan and are part of the defence structure against tsunamis, the quantification of their resistance to tree damage is necessary. The resistance of Japanese black pine to uprooting and stem breakage and its bending properties were estimated by a tree-pulling test and bending test of green logs in conjunction with the published literature. A general equation to estimate the critical turning moment for uprooting was developed using diameter at breast height and tree height as predictor variables. For moduli of elasticity and rupture of stems (MOE and MOR), medians [5th and 95th percentile values] were 5.41 [3.78, 6.82] GPa and 35.0 [28.7, 41.8] MPa, respectively. With the obtained critical turning moment and MOR, the critical tsunami water depth was estimated by numerical simulations using modelled trees. The numerical simulations revealed that Japanese black pine trees on coastal sand dunes tended to be more vulnerable to uprooting than stem breakage, with taller and more slender trees showing less resistance to stem breakage. The results on the mechanical properties of Japanese black pine are of use to those in the wood science community as well as coastal managers who need to know the mechanical strength of Japanese black pine to help evaluate their resistance against tsunamis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00226-019-01078-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5877162", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1031697", 
            "issn": [
              "0043-7719", 
              "1432-5225"
            ], 
            "name": "Wood Science and Technology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "name": "Mechanical properties of Japanese black pine (Pinus thunbergii Parl.) planted on coastal sand dunes: resistance to uprooting and stem breakage by tsunamis", 
        "pagination": "469-489", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4ccf19d9e53afad16f667bd327a155c758c3191e445f99f0f61a0e7c64739119"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00226-019-01078-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112158327"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00226-019-01078-z", 
          "https://app.dimensions.ai/details/publication/pub.1112158327"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70031_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00226-019-01078-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00226-019-01078-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00226-019-01078-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00226-019-01078-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00226-019-01078-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    258 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00226-019-01078-z schema:about anzsrc-for:07
    2 anzsrc-for:0705
    3 schema:author Nf13388fb61f04fb399e6370997a4b57a
    4 schema:citation sg:pub.10.1007/bf00379254
    5 sg:pub.10.1007/s00024-003-2417-x
    6 sg:pub.10.1007/s00226-016-0827-z
    7 sg:pub.10.1007/s00468-004-0330-2
    8 sg:pub.10.1007/s00468-010-0485-y
    9 sg:pub.10.1007/s004680000065
    10 sg:pub.10.1007/s10086-012-1297-z
    11 sg:pub.10.1007/s10310-016-0539-0
    12 sg:pub.10.1007/s10342-011-0508-2
    13 sg:pub.10.1007/s11069-006-9064-3
    14 sg:pub.10.1007/s11069-012-0373-4
    15 sg:pub.10.1038/nclimate1693
    16 https://doi.org/10.1002/2015rg000481
    17 https://doi.org/10.1016/j.foreco.2004.07.072
    18 https://doi.org/10.1016/j.plantsci.2016.01.006
    19 https://doi.org/10.1016/s0304-3800(00)00220-9
    20 https://doi.org/10.1016/s0378-1127(00)00300-5
    21 https://doi.org/10.1016/s0378-1127(00)00306-6
    22 https://doi.org/10.1080/05785634.1987.11924470
    23 https://doi.org/10.1093/aob/mcw059
    24 https://doi.org/10.1093/forestry/59.2.173
    25 https://doi.org/10.1093/forestry/cpn015
    26 https://doi.org/10.1093/forestry/cps080
    27 https://doi.org/10.1093/treephys/3.4.365
    28 https://doi.org/10.1093/treephys/5.3.307
    29 https://doi.org/10.1126/science.1118387
    30 https://doi.org/10.1139/cjfr-2013-0150
    31 https://doi.org/10.1139/x05-157
    32 https://doi.org/10.1139/x06-072
    33 https://doi.org/10.1139/x90-165
    34 https://doi.org/10.1139/x99-029
    35 https://doi.org/10.2208/kaigan.69.i_361
    36 https://doi.org/10.2208/prohe.49.859
    37 https://doi.org/10.2307/2482410
    38 https://doi.org/10.2307/2996665
    39 https://doi.org/10.2307/3543410
    40 https://doi.org/10.4005/jjfs.93.8
    41 https://doi.org/10.4005/jjfs.96.206
    42 https://doi.org/10.7211/jjsrt.41.308
    43 schema:datePublished 2019-03
    44 schema:datePublishedReg 2019-03-01
    45 schema:description Given that Japanese black pine trees (Pinus thunbergii Parl.) are predominant in the coastal forests of Japan and are part of the defence structure against tsunamis, the quantification of their resistance to tree damage is necessary. The resistance of Japanese black pine to uprooting and stem breakage and its bending properties were estimated by a tree-pulling test and bending test of green logs in conjunction with the published literature. A general equation to estimate the critical turning moment for uprooting was developed using diameter at breast height and tree height as predictor variables. For moduli of elasticity and rupture of stems (MOE and MOR), medians [5th and 95th percentile values] were 5.41 [3.78, 6.82] GPa and 35.0 [28.7, 41.8] MPa, respectively. With the obtained critical turning moment and MOR, the critical tsunami water depth was estimated by numerical simulations using modelled trees. The numerical simulations revealed that Japanese black pine trees on coastal sand dunes tended to be more vulnerable to uprooting than stem breakage, with taller and more slender trees showing less resistance to stem breakage. The results on the mechanical properties of Japanese black pine are of use to those in the wood science community as well as coastal managers who need to know the mechanical strength of Japanese black pine to help evaluate their resistance against tsunamis.
    46 schema:genre research_article
    47 schema:inLanguage en
    48 schema:isAccessibleForFree false
    49 schema:isPartOf N269f2719af114098ba459e270f6d0afa
    50 N2b728ed6cccb4b3fb033a0d1347f42bd
    51 sg:journal.1031697
    52 schema:name Mechanical properties of Japanese black pine (Pinus thunbergii Parl.) planted on coastal sand dunes: resistance to uprooting and stem breakage by tsunamis
    53 schema:pagination 469-489
    54 schema:productId N142a3295a8a948ccb348d2344aa8f0f6
    55 N457884c1ef464044b0377415832c6d70
    56 N8eccf2f72bc248d2ab45ed2a16a79c1f
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158327
    58 https://doi.org/10.1007/s00226-019-01078-z
    59 schema:sdDatePublished 2019-04-11T12:36
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher Nab79e3a1c82543a3ba015c8248057f41
    62 schema:url https://link.springer.com/10.1007%2Fs00226-019-01078-z
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N00ec29a597bc4896875cb67d9ff8dd24 rdf:first Nfbaa0f9495b84569b906cf0fde68f627
    67 rdf:rest N0698e6b0980b487e9ae97feda34dcab7
    68 N0698e6b0980b487e9ae97feda34dcab7 rdf:first Neb5f74a175994fb2beeed61b8fa4ce2d
    69 rdf:rest N4eb3c95b25164801b43e11471f837b24
    70 N086d064df83b4f0f9a598fbb4f54939d rdf:first Nff8966c0054d4a1aa63bcc3854f3fdf9
    71 rdf:rest N2683b7d6292a414292117831452418c2
    72 N13bf1935dbee4ab19fae660d9475d634 schema:name Minamikaga General Agriculture Forestry Office Ishikawa Prefecture, 923-0801, Komatsu, Ishikawa, Japan
    73 rdf:type schema:Organization
    74 N142a3295a8a948ccb348d2344aa8f0f6 schema:name dimensions_id
    75 schema:value pub.1112158327
    76 rdf:type schema:PropertyValue
    77 N198dd836881242adae47dfff535e2a16 schema:affiliation https://www.grid.ac/institutes/grid.417935.d
    78 schema:familyName Nanko
    79 schema:givenName Kazuki
    80 rdf:type schema:Person
    81 N25ed2653c09241f0b2a8eb3d90f94292 schema:name Kenou General Agriculture Forestry Office Ishikawa Prefecture, 920-8204, Kanazawa, Ishikawa, Japan
    82 rdf:type schema:Organization
    83 N2683b7d6292a414292117831452418c2 rdf:first N925297610f0e42c58b75ef62ebf07293
    84 rdf:rest N26abb064b4044b04bec1b9e69550cdee
    85 N269f2719af114098ba459e270f6d0afa schema:issueNumber 2
    86 rdf:type schema:PublicationIssue
    87 N26abb064b4044b04bec1b9e69550cdee rdf:first N84dc8479b9544d09a0d9af8a2cb03ce8
    88 rdf:rest N756856b3dd004ab681152b00f0dddc06
    89 N2b728ed6cccb4b3fb033a0d1347f42bd schema:volumeNumber 53
    90 rdf:type schema:PublicationVolume
    91 N41fda2ad2c834298a3f9e883630eb91a schema:name Ishikawa Agricultural and Forestry Research Center, Forestry Experiment Station, 920-2114, Hakusan, Ishikawa, Japan
    92 rdf:type schema:Organization
    93 N457884c1ef464044b0377415832c6d70 schema:name readcube_id
    94 schema:value 4ccf19d9e53afad16f667bd327a155c758c3191e445f99f0f61a0e7c64739119
    95 rdf:type schema:PropertyValue
    96 N4eb3c95b25164801b43e11471f837b24 rdf:first Ne6e8e1cb4f9e41c6857967a7baa54b80
    97 rdf:rest N086d064df83b4f0f9a598fbb4f54939d
    98 N605b3ba661034aa6ae6e97f4303a8ee8 rdf:first Ne4c2aa0c2a3344aab26a0c6624ae3eaa
    99 rdf:rest N00ec29a597bc4896875cb67d9ff8dd24
    100 N637ce116cb2d460aab476e1972fa62c9 rdf:first Nae1bc9dec569472696d17bcaeb5b6ede
    101 rdf:rest N605b3ba661034aa6ae6e97f4303a8ee8
    102 N756856b3dd004ab681152b00f0dddc06 rdf:first Nd8788e248b4a49cca5472c01382de784
    103 rdf:rest rdf:nil
    104 N84dc8479b9544d09a0d9af8a2cb03ce8 schema:affiliation N13bf1935dbee4ab19fae660d9475d634
    105 schema:familyName Takimoto
    106 schema:givenName Hiromi
    107 rdf:type schema:Person
    108 N8eccf2f72bc248d2ab45ed2a16a79c1f schema:name doi
    109 schema:value 10.1007/s00226-019-01078-z
    110 rdf:type schema:PropertyValue
    111 N925297610f0e42c58b75ef62ebf07293 schema:affiliation N41fda2ad2c834298a3f9e883630eb91a
    112 schema:familyName Matsumoto
    113 schema:givenName Hiroshi
    114 rdf:type schema:Person
    115 Nab79e3a1c82543a3ba015c8248057f41 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 Nae1bc9dec569472696d17bcaeb5b6ede schema:affiliation https://www.grid.ac/institutes/grid.417935.d
    118 schema:familyName Suzuki
    119 schema:givenName Satoru
    120 rdf:type schema:Person
    121 Nd8788e248b4a49cca5472c01382de784 schema:affiliation https://www.grid.ac/institutes/grid.417935.d
    122 schema:familyName Sakamoto
    123 schema:givenName Tomoki
    124 rdf:type schema:Person
    125 Ne4c2aa0c2a3344aab26a0c6624ae3eaa schema:affiliation https://www.grid.ac/institutes/grid.417935.d
    126 schema:familyName Noguchi
    127 schema:givenName Hironori
    128 rdf:type schema:Person
    129 Ne6e8e1cb4f9e41c6857967a7baa54b80 schema:affiliation N25ed2653c09241f0b2a8eb3d90f94292
    130 schema:familyName Ogura
    131 schema:givenName Akira
    132 rdf:type schema:Person
    133 Neb5f74a175994fb2beeed61b8fa4ce2d schema:affiliation https://www.grid.ac/institutes/grid.33489.35
    134 schema:familyName Levia
    135 schema:givenName Delphis F.
    136 rdf:type schema:Person
    137 Nf13388fb61f04fb399e6370997a4b57a rdf:first N198dd836881242adae47dfff535e2a16
    138 rdf:rest N637ce116cb2d460aab476e1972fa62c9
    139 Nf185da11cec5495f83b8398caef05aba schema:name Ishikawa Agricultural and Forestry Research Center, Forestry Experiment Station, 920-2114, Hakusan, Ishikawa, Japan
    140 rdf:type schema:Organization
    141 Nfbaa0f9495b84569b906cf0fde68f627 schema:affiliation Nf185da11cec5495f83b8398caef05aba
    142 schema:familyName Ishida
    143 schema:givenName Yoji
    144 rdf:type schema:Person
    145 Nff8966c0054d4a1aa63bcc3854f3fdf9 schema:affiliation https://www.grid.ac/institutes/grid.417935.d
    146 schema:familyName Hagino
    147 schema:givenName Hiroaki
    148 rdf:type schema:Person
    149 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
    150 schema:name Agricultural and Veterinary Sciences
    151 rdf:type schema:DefinedTerm
    152 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
    153 schema:name Forestry Sciences
    154 rdf:type schema:DefinedTerm
    155 sg:grant.5877162 http://pending.schema.org/fundedItem sg:pub.10.1007/s00226-019-01078-z
    156 rdf:type schema:MonetaryGrant
    157 sg:journal.1031697 schema:issn 0043-7719
    158 1432-5225
    159 schema:name Wood Science and Technology
    160 rdf:type schema:Periodical
    161 sg:pub.10.1007/bf00379254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053134893
    162 https://doi.org/10.1007/bf00379254
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s00024-003-2417-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018992905
    165 https://doi.org/10.1007/s00024-003-2417-x
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00226-016-0827-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037695245
    168 https://doi.org/10.1007/s00226-016-0827-z
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s00468-004-0330-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021235203
    171 https://doi.org/10.1007/s00468-004-0330-2
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s00468-010-0485-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024746663
    174 https://doi.org/10.1007/s00468-010-0485-y
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s004680000065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026703213
    177 https://doi.org/10.1007/s004680000065
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s10086-012-1297-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024371872
    180 https://doi.org/10.1007/s10086-012-1297-z
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s10310-016-0539-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043897090
    183 https://doi.org/10.1007/s10310-016-0539-0
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s10342-011-0508-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024985239
    186 https://doi.org/10.1007/s10342-011-0508-2
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s11069-006-9064-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052304326
    189 https://doi.org/10.1007/s11069-006-9064-3
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s11069-012-0373-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045835386
    192 https://doi.org/10.1007/s11069-012-0373-4
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/nclimate1693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000006981
    195 https://doi.org/10.1038/nclimate1693
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/2015rg000481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029386685
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.foreco.2004.07.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001002756
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.plantsci.2016.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038720123
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/s0304-3800(00)00220-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027812208
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/s0378-1127(00)00300-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017403354
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/s0378-1127(00)00306-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039247708
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1080/05785634.1987.11924470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103490830
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/aob/mcw059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059395320
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1093/forestry/59.2.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059589658
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1093/forestry/cpn015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010263687
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/forestry/cps080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007461280
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/treephys/3.4.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002168473
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1093/treephys/5.3.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006383161
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1126/science.1118387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452641
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1139/cjfr-2013-0150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051019326
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1139/x05-157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017031976
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1139/x06-072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042779041
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1139/x90-165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005130164
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1139/x99-029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011993247
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.2208/kaigan.69.i_361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011931941
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.2208/prohe.49.859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026667104
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.2307/2482410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102611741
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.2307/2996665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102613862
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.2307/3543410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070365603
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.4005/jjfs.93.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010884578
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.4005/jjfs.96.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609799
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.7211/jjsrt.41.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005738944
    250 rdf:type schema:CreativeWork
    251 https://www.grid.ac/institutes/grid.33489.35 schema:alternateName University of Delaware
    252 schema:name Department of Geography, University of Delaware, 19716-2541, Newark, DE, USA
    253 Department of Plant and Soil Sciences, University of Delaware, 19716-2170, Newark, DE, USA
    254 rdf:type schema:Organization
    255 https://www.grid.ac/institutes/grid.417935.d schema:alternateName Forestry and Forest Products Research Institute
    256 schema:name Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, 305-8687, Tsukuba, Ibaraki, Japan
    257 Tohoku Research Center, Forestry and Forest Products Research Institute, 020-0123, Morioka, Iwate, Japan
    258 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...