Density and density profile changes in birch and spruce caused by thermo-hydro treatment measured by X-ray computed tomography View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Vladimirs Biziks, Joris Van Acker, Holger Militz, Juris Grinins, Jan Van den Bulcke

ABSTRACT

Birch and spruce samples were scanned using X-ray computed tomography (CT) to determine changes in the density and density profile caused by thermo-hydro treatment (THT). Small-dimension wood blocks were subjected to treatment at three different temperatures (160 °C, 170 °C and 180 °C) for 1 h and scanned before and after treatment. Identical acquisition and analysis procedures were used to evaluate the changes in approximate mean density and radial density profile of oven-dried untreated and treated material. The X-ray CT scans enabled measuring of the changes in wood density after THT. The results confirm that there were similar tendencies in the total density decrease with increasing temperature. However, variations in density changes between the earlywood (EW) and latewood (LW) of birch and spruce were found. A correlation of the radial density profiles of treated versus untreated specimens showed a similar density decrease in EW and LW in birch wood and inconsistent reductions in spruce wood. More... »

PAGES

491-504

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00226-018-1070-6

DOI

http://dx.doi.org/10.1007/s00226-018-1070-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110254941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Department of Biology and Wood Products, Faculty of Forest Science and Forest Ecology, Georg-August University of Goettingen, B\u00fcsgenweg 4, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biziks", 
        "givenName": "Vladimirs", 
        "id": "sg:person.016670067307.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670067307.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "UGCT - UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium", 
            "UGCT, University of Ghent Center of X-ray Tomography, Proeftuinstraat 86, 9000, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Acker", 
        "givenName": "Joris", 
        "id": "sg:person.0654411540.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654411540.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Department of Biology and Wood Products, Faculty of Forest Science and Forest Ecology, Georg-August University of Goettingen, B\u00fcsgenweg 4, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Militz", 
        "givenName": "Holger", 
        "id": "sg:person.010243333747.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010243333747.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Latvian State Institute of Wood Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.426580.d", 
          "name": [
            "Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., 1006, Riga, Latvia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grinins", 
        "givenName": "Juris", 
        "id": "sg:person.010766237607.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010766237607.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ghent University", 
          "id": "https://www.grid.ac/institutes/grid.5342.0", 
          "name": [
            "UGCT - UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium", 
            "UGCT, University of Ghent Center of X-ray Tomography, Proeftuinstraat 86, 9000, Ghent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van den Bulcke", 
        "givenName": "Jan", 
        "id": "sg:person.012710440361.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012710440361.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jaap.2012.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001267171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/hf-2014-0083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003572770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mcq224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005579312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymdegradstab.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007201422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1431927610094389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009911942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00192691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013365088", 
          "https://doi.org/10.1007/bf00192691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00225235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013584626", 
          "https://doi.org/10.1007/bf00225235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00107-016-1045-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016723396", 
          "https://doi.org/10.1007/s00107-016-1045-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2014.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020407891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00107-013-0744-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021163937", 
          "https://doi.org/10.1007/s00107-013-0744-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00107-013-0683-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022076076", 
          "https://doi.org/10.1007/s00107-013-0683-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02827581.2014.919350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026619683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/25.6.651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027428391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-001-0122-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029586392", 
          "https://doi.org/10.1007/s00226-001-0122-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2009.01.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030102648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/nph.12871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033120149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-013-0530-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038699280", 
          "https://doi.org/10.1007/s00226-013-0530-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-013-0530-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038699280", 
          "https://doi.org/10.1007/s00226-013-0530-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2005.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039775657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.buildenv.2005.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039775657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nimb.2013.10.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040038680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/hfsg.1978.32.6.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043330228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2007.05.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043798479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2003.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053217735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2003.07.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053217735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest/2009071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056968175", 
          "https://doi.org/10.1051/forest/2009071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/forest:2006050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest:2007048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969894", 
          "https://doi.org/10.1051/forest:2007048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.26.000890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065162369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.143.5.1101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069312901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/xst-2010-0268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078294322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-017-0910-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084765613", 
          "https://doi.org/10.1007/s00226-017-0910-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-017-0910-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084765613", 
          "https://doi.org/10.1007/s00226-017-0910-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Birch and spruce samples were scanned using X-ray computed tomography (CT) to determine changes in the density and density profile caused by thermo-hydro treatment (THT). Small-dimension wood blocks were subjected to treatment at three different temperatures (160 \u00b0C, 170 \u00b0C and 180 \u00b0C) for 1 h and scanned before and after treatment. Identical acquisition and analysis procedures were used to evaluate the changes in approximate mean density and radial density profile of oven-dried untreated and treated material. The X-ray CT scans enabled measuring of the changes in wood density after THT. The results confirm that there were similar tendencies in the total density decrease with increasing temperature. However, variations in density changes between the earlywood (EW) and latewood (LW) of birch and spruce were found. A correlation of the radial density profiles of treated versus untreated specimens showed a similar density decrease in EW and LW in birch wood and inconsistent reductions in spruce wood.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00226-018-1070-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1031697", 
        "issn": [
          "0043-7719", 
          "1432-5225"
        ], 
        "name": "Wood Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Density and density profile changes in birch and spruce caused by thermo-hydro treatment measured by X-ray computed tomography", 
    "pagination": "491-504", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "082a919c788430814e3f7e1327fde2e41a2cc9f6e6b140d2c7fe76fc5db3c074"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00226-018-1070-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110254941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00226-018-1070-6", 
      "https://app.dimensions.ai/details/publication/pub.1110254941"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00226-018-1070-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00226-018-1070-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00226-018-1070-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00226-018-1070-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00226-018-1070-6'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00226-018-1070-6 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nce1b3ca5e79a420887477323a8af311f
4 schema:citation sg:pub.10.1007/bf00192691
5 sg:pub.10.1007/bf00225235
6 sg:pub.10.1007/s00107-013-0683-6
7 sg:pub.10.1007/s00107-013-0744-x
8 sg:pub.10.1007/s00107-016-1045-y
9 sg:pub.10.1007/s00226-001-0122-4
10 sg:pub.10.1007/s00226-013-0530-2
11 sg:pub.10.1007/s00226-017-0910-0
12 sg:pub.10.1051/forest/2009071
13 sg:pub.10.1051/forest:2007048
14 https://doi.org/10.1016/j.buildenv.2005.07.017
15 https://doi.org/10.1016/j.foreco.2003.07.033
16 https://doi.org/10.1016/j.jaap.2012.10.016
17 https://doi.org/10.1016/j.jsb.2014.06.003
18 https://doi.org/10.1016/j.nima.2007.05.073
19 https://doi.org/10.1016/j.nimb.2009.01.129
20 https://doi.org/10.1016/j.nimb.2013.10.051
21 https://doi.org/10.1016/j.polymdegradstab.2009.09.003
22 https://doi.org/10.1017/s1431927610094389
23 https://doi.org/10.1051/forest:2006050
24 https://doi.org/10.1080/02827581.2014.919350
25 https://doi.org/10.1093/aob/mcq224
26 https://doi.org/10.1093/treephys/25.6.651
27 https://doi.org/10.1111/nph.12871
28 https://doi.org/10.1364/josaa.26.000890
29 https://doi.org/10.1515/hf-2014-0083
30 https://doi.org/10.1515/hfsg.1978.32.6.193
31 https://doi.org/10.2214/ajr.143.5.1101
32 https://doi.org/10.3233/xst-2010-0268
33 schema:datePublished 2019-03
34 schema:datePublishedReg 2019-03-01
35 schema:description Birch and spruce samples were scanned using X-ray computed tomography (CT) to determine changes in the density and density profile caused by thermo-hydro treatment (THT). Small-dimension wood blocks were subjected to treatment at three different temperatures (160 °C, 170 °C and 180 °C) for 1 h and scanned before and after treatment. Identical acquisition and analysis procedures were used to evaluate the changes in approximate mean density and radial density profile of oven-dried untreated and treated material. The X-ray CT scans enabled measuring of the changes in wood density after THT. The results confirm that there were similar tendencies in the total density decrease with increasing temperature. However, variations in density changes between the earlywood (EW) and latewood (LW) of birch and spruce were found. A correlation of the radial density profiles of treated versus untreated specimens showed a similar density decrease in EW and LW in birch wood and inconsistent reductions in spruce wood.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N1484c3b15cbb4515b19894c2d1efd79e
40 Nc2cb0f61c89249469ae07d1a7d5ad5f7
41 sg:journal.1031697
42 schema:name Density and density profile changes in birch and spruce caused by thermo-hydro treatment measured by X-ray computed tomography
43 schema:pagination 491-504
44 schema:productId N3ccef7790efb434ebe509fa6bc0b97f6
45 N5b2ca9cf894a4bc0afe559e2521f2778
46 Necf71497481d4b4fbd47c63ffc01c63b
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110254941
48 https://doi.org/10.1007/s00226-018-1070-6
49 schema:sdDatePublished 2019-04-11T12:38
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N303fd869a68d4ea6b9d7ae66dff04473
52 schema:url https://link.springer.com/10.1007%2Fs00226-018-1070-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0facb5ef84c04d72984f47a73a1d0982 rdf:first sg:person.010766237607.89
57 rdf:rest N1829f4f530db47f5a8d28d4ad05eb682
58 N1484c3b15cbb4515b19894c2d1efd79e schema:volumeNumber 53
59 rdf:type schema:PublicationVolume
60 N1829f4f530db47f5a8d28d4ad05eb682 rdf:first sg:person.012710440361.64
61 rdf:rest rdf:nil
62 N303fd869a68d4ea6b9d7ae66dff04473 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N3ccef7790efb434ebe509fa6bc0b97f6 schema:name dimensions_id
65 schema:value pub.1110254941
66 rdf:type schema:PropertyValue
67 N5b2ca9cf894a4bc0afe559e2521f2778 schema:name readcube_id
68 schema:value 082a919c788430814e3f7e1327fde2e41a2cc9f6e6b140d2c7fe76fc5db3c074
69 rdf:type schema:PropertyValue
70 N65e442d7862d46128d8c2dd713c9daf9 rdf:first sg:person.010243333747.17
71 rdf:rest N0facb5ef84c04d72984f47a73a1d0982
72 Nb3d97d1e368b4b1fbb6c0c376829214a rdf:first sg:person.0654411540.07
73 rdf:rest N65e442d7862d46128d8c2dd713c9daf9
74 Nc2cb0f61c89249469ae07d1a7d5ad5f7 schema:issueNumber 2
75 rdf:type schema:PublicationIssue
76 Nce1b3ca5e79a420887477323a8af311f rdf:first sg:person.016670067307.40
77 rdf:rest Nb3d97d1e368b4b1fbb6c0c376829214a
78 Necf71497481d4b4fbd47c63ffc01c63b schema:name doi
79 schema:value 10.1007/s00226-018-1070-6
80 rdf:type schema:PropertyValue
81 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
82 schema:name Medical and Health Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
85 schema:name Clinical Sciences
86 rdf:type schema:DefinedTerm
87 sg:journal.1031697 schema:issn 0043-7719
88 1432-5225
89 schema:name Wood Science and Technology
90 rdf:type schema:Periodical
91 sg:person.010243333747.17 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
92 schema:familyName Militz
93 schema:givenName Holger
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010243333747.17
95 rdf:type schema:Person
96 sg:person.010766237607.89 schema:affiliation https://www.grid.ac/institutes/grid.426580.d
97 schema:familyName Grinins
98 schema:givenName Juris
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010766237607.89
100 rdf:type schema:Person
101 sg:person.012710440361.64 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
102 schema:familyName Van den Bulcke
103 schema:givenName Jan
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012710440361.64
105 rdf:type schema:Person
106 sg:person.016670067307.40 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
107 schema:familyName Biziks
108 schema:givenName Vladimirs
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670067307.40
110 rdf:type schema:Person
111 sg:person.0654411540.07 schema:affiliation https://www.grid.ac/institutes/grid.5342.0
112 schema:familyName Van Acker
113 schema:givenName Joris
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654411540.07
115 rdf:type schema:Person
116 sg:pub.10.1007/bf00192691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013365088
117 https://doi.org/10.1007/bf00192691
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf00225235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013584626
120 https://doi.org/10.1007/bf00225235
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00107-013-0683-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076076
123 https://doi.org/10.1007/s00107-013-0683-6
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00107-013-0744-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021163937
126 https://doi.org/10.1007/s00107-013-0744-x
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00107-016-1045-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016723396
129 https://doi.org/10.1007/s00107-016-1045-y
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00226-001-0122-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029586392
132 https://doi.org/10.1007/s00226-001-0122-4
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s00226-013-0530-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038699280
135 https://doi.org/10.1007/s00226-013-0530-2
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00226-017-0910-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084765613
138 https://doi.org/10.1007/s00226-017-0910-0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1051/forest/2009071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056968175
141 https://doi.org/10.1051/forest/2009071
142 rdf:type schema:CreativeWork
143 sg:pub.10.1051/forest:2007048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969894
144 https://doi.org/10.1051/forest:2007048
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.buildenv.2005.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039775657
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.foreco.2003.07.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053217735
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jaap.2012.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001267171
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jsb.2014.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020407891
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.nima.2007.05.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043798479
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.nimb.2009.01.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030102648
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.nimb.2013.10.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040038680
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.polymdegradstab.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007201422
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1017/s1431927610094389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009911942
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1051/forest:2006050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969809
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1080/02827581.2014.919350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026619683
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/aob/mcq224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005579312
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/treephys/25.6.651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027428391
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/nph.12871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033120149
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1364/josaa.26.000890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065162369
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1515/hf-2014-0083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003572770
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1515/hfsg.1978.32.6.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043330228
179 rdf:type schema:CreativeWork
180 https://doi.org/10.2214/ajr.143.5.1101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069312901
181 rdf:type schema:CreativeWork
182 https://doi.org/10.3233/xst-2010-0268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078294322
183 rdf:type schema:CreativeWork
184 https://www.grid.ac/institutes/grid.426580.d schema:alternateName Latvian State Institute of Wood Chemistry
185 schema:name Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., 1006, Riga, Latvia
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.5342.0 schema:alternateName Ghent University
188 schema:name UGCT - UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
189 UGCT, University of Ghent Center of X-ray Tomography, Proeftuinstraat 86, 9000, Ghent, Belgium
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
192 schema:name Department of Biology and Wood Products, Faculty of Forest Science and Forest Ecology, Georg-August University of Goettingen, Büsgenweg 4, 37077, Göttingen, Germany
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...