Is hygrothermal recovery of tension wood temperature-dependent? View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

K. C. Sujan, Hiroyuki Yamamoto, Miyuki Matsuo, Masato Yoshida, Kazuhiro Naito, Yoshihito Suzuki, Noboru Yamashita, Fabio M. Yamaji

ABSTRACT

When a green wood specimen is hygrothermally treated, it often shows dimensional changes in the longitudinal and transversal directions, which is called hygrothermal recovery of wood. Hygrothermal recovery of tension wood is assumed to be behind the unusual contraction of gelatinous layer along the longitudinal axis. This study investigated whether hygrothermal recovery of tension wood was temperature-dependent. Hygrothermal treatment at 80, 100 and 120 °C was given to green Quercus serrata tension wood, and longitudinal and tangential dimensions were recorded. In the longitudinal direction, the trend line obtained after 10 times of 10-min hygrothermal treatments at respective temperatures unraveled that it was comprised of initial recovery and continuum contraction at 100 and 120 °C, but no initial recovery was recognized at 80 °C. In the tangential direction, both the initial and the continuum deformations were expansive, and initial recovery was smaller at 80 °C. The results of multiple comparison test revealed that the parameters characterizing the trend line differed significantly among three temperature sets. Further, the result highlighted the existence of breakage of hygrothermal recovery mechanism at temperature between 80 and 100 °C. More... »

PAGES

759-772

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00226-016-0817-1

DOI

http://dx.doi.org/10.1007/s00226-016-0817-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043226917


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sujan", 
        "givenName": "K. C.", 
        "id": "sg:person.011524063641.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524063641.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamamoto", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.010263332125.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010263332125.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuo", 
        "givenName": "Miyuki", 
        "id": "sg:person.016702307241.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016702307241.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshida", 
        "givenName": "Masato", 
        "id": "sg:person.015274257245.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015274257245.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naito", 
        "givenName": "Kazuhiro", 
        "id": "sg:person.013171001141.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171001141.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Aichi Forestry Research Institute, Shinshiro, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Yoshihito", 
        "id": "sg:person.010413604065.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010413604065.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Aichi Forestry Research Institute, Shinshiro, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamashita", 
        "givenName": "Noboru", 
        "id": "sg:person.013401506065.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401506065.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of S\u00e3o Carlos", 
          "id": "https://www.grid.ac/institutes/grid.411247.5", 
          "name": [
            "Departamento de Ci\u00eancias Ambientais, Universidade Federal de Sa\u00f5 Carlos, Campus de Sorocaba, CEP 18052-780, Sorocaba, SP, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamaji", 
        "givenName": "Fabio M.", 
        "id": "sg:person.012420323107.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012420323107.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1515/hf.2011.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000161098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x11-161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004310235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10086-006-0815-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007807204", 
          "https://doi.org/10.1007/s10086-006-0815-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10086-006-0815-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007807204", 
          "https://doi.org/10.1007/s10086-006-0815-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10086-006-0815-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007807204", 
          "https://doi.org/10.1007/s10086-006-0815-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02608613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020057511", 
          "https://doi.org/10.1007/bf02608613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/hf.2007.093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026682282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-009-0262-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032857562", 
          "https://doi.org/10.1007/s00226-009-0262-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-009-0262-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032857562", 
          "https://doi.org/10.1007/s00226-009-0262-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-009-0262-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032857562", 
          "https://doi.org/10.1007/s00226-009-0262-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24638-8_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036853642", 
          "https://doi.org/10.1007/978-3-642-24638-8_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10086-003-0533-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038407425", 
          "https://doi.org/10.1007/s10086-003-0533-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10086-003-0533-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038407425", 
          "https://doi.org/10.1007/s10086-003-0533-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00226-015-0762-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041298119", 
          "https://doi.org/10.1007/s00226-015-0762-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2008.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042044671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00107-015-0880-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042857479", 
          "https://doi.org/10.1007/s00107-015-0880-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erp133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043128487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erp133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043128487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-008-2546-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043678410", 
          "https://doi.org/10.1007/s10853-008-2546-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/hf-2013-0153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044703645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/22941932-90000192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045532687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/22941932-90000192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045532687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1464793103006377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051444542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bm700987q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055223732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bm700987q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055223732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest:19940311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969025", 
          "https://doi.org/10.1051/forest:19940311"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "When a green wood specimen is hygrothermally treated, it often shows dimensional changes in the longitudinal and transversal directions, which is called hygrothermal recovery of wood. Hygrothermal recovery of tension wood is assumed to be behind the unusual contraction of gelatinous layer along the longitudinal axis. This study investigated whether hygrothermal recovery of tension wood was temperature-dependent. Hygrothermal treatment at 80, 100 and 120 \u00b0C was given to green Quercus serrata tension wood, and longitudinal and tangential dimensions were recorded. In the longitudinal direction, the trend line obtained after 10 times of 10-min hygrothermal treatments at respective temperatures unraveled that it was comprised of initial recovery and continuum contraction at 100 and 120 \u00b0C, but no initial recovery was recognized at 80 \u00b0C. In the tangential direction, both the initial and the continuum deformations were expansive, and initial recovery was smaller at 80 \u00b0C. The results of multiple comparison test revealed that the parameters characterizing the trend line differed significantly among three temperature sets. Further, the result highlighted the existence of breakage of hygrothermal recovery mechanism at temperature between 80 and 100 \u00b0C.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00226-016-0817-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5848160", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1031697", 
        "issn": [
          "0043-7719", 
          "1432-5225"
        ], 
        "name": "Wood Science and Technology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "50"
      }
    ], 
    "name": "Is hygrothermal recovery of tension wood temperature-dependent?", 
    "pagination": "759-772", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cde7a99b23983c2787ba88658cfadcd57620312c0bd0574cd3ad65490397c6af"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00226-016-0817-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043226917"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00226-016-0817-1", 
      "https://app.dimensions.ai/details/publication/pub.1043226917"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000593.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00226-016-0817-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00226-016-0817-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00226-016-0817-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00226-016-0817-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00226-016-0817-1'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00226-016-0817-1 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N8257c75258214be0a93ed4afaa59844a
4 schema:citation sg:pub.10.1007/978-3-642-24638-8_8
5 sg:pub.10.1007/bf02608613
6 sg:pub.10.1007/s00107-015-0880-6
7 sg:pub.10.1007/s00226-009-0262-5
8 sg:pub.10.1007/s00226-015-0762-4
9 sg:pub.10.1007/s10086-003-0533-y
10 sg:pub.10.1007/s10086-006-0815-2
11 sg:pub.10.1007/s10853-008-2546-9
12 sg:pub.10.1051/forest:19940311
13 https://doi.org/10.1016/j.foreco.2008.08.012
14 https://doi.org/10.1017/s1464793103006377
15 https://doi.org/10.1021/bm700987q
16 https://doi.org/10.1093/jxb/erp133
17 https://doi.org/10.1139/x11-161
18 https://doi.org/10.1163/22941932-90000192
19 https://doi.org/10.1515/hf-2013-0153
20 https://doi.org/10.1515/hf.2007.093
21 https://doi.org/10.1515/hf.2011.159
22 schema:datePublished 2016-07
23 schema:datePublishedReg 2016-07-01
24 schema:description When a green wood specimen is hygrothermally treated, it often shows dimensional changes in the longitudinal and transversal directions, which is called hygrothermal recovery of wood. Hygrothermal recovery of tension wood is assumed to be behind the unusual contraction of gelatinous layer along the longitudinal axis. This study investigated whether hygrothermal recovery of tension wood was temperature-dependent. Hygrothermal treatment at 80, 100 and 120 °C was given to green Quercus serrata tension wood, and longitudinal and tangential dimensions were recorded. In the longitudinal direction, the trend line obtained after 10 times of 10-min hygrothermal treatments at respective temperatures unraveled that it was comprised of initial recovery and continuum contraction at 100 and 120 °C, but no initial recovery was recognized at 80 °C. In the tangential direction, both the initial and the continuum deformations were expansive, and initial recovery was smaller at 80 °C. The results of multiple comparison test revealed that the parameters characterizing the trend line differed significantly among three temperature sets. Further, the result highlighted the existence of breakage of hygrothermal recovery mechanism at temperature between 80 and 100 °C.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N1e640260019f451787067021542d89fa
29 Ne9d1a4ca977e42c0959f32856777613a
30 sg:journal.1031697
31 schema:name Is hygrothermal recovery of tension wood temperature-dependent?
32 schema:pagination 759-772
33 schema:productId N7e98c5fb155e4b62b4c130c85641a967
34 Na3051baef3fa4f829910772f768ad321
35 Nbbbdbcf2527740f8a6bffc40d56680e8
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043226917
37 https://doi.org/10.1007/s00226-016-0817-1
38 schema:sdDatePublished 2019-04-10T15:13
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Ncafef17f413a4c60acf126fe7901af97
41 schema:url http://link.springer.com/10.1007/s00226-016-0817-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N1e640260019f451787067021542d89fa schema:volumeNumber 50
46 rdf:type schema:PublicationVolume
47 N642e399bee534ec5bded563cc3a34ca8 rdf:first sg:person.012420323107.48
48 rdf:rest rdf:nil
49 N669bc8412ef74df69d9200331ceb778e rdf:first sg:person.016702307241.43
50 rdf:rest Nc678b45c60eb49a8a43e2c1fbe413316
51 N7e98c5fb155e4b62b4c130c85641a967 schema:name doi
52 schema:value 10.1007/s00226-016-0817-1
53 rdf:type schema:PropertyValue
54 N8257c75258214be0a93ed4afaa59844a rdf:first sg:person.011524063641.59
55 rdf:rest N91806ef8322a44d597e88108168b8663
56 N91806ef8322a44d597e88108168b8663 rdf:first sg:person.010263332125.01
57 rdf:rest N669bc8412ef74df69d9200331ceb778e
58 Na3051baef3fa4f829910772f768ad321 schema:name dimensions_id
59 schema:value pub.1043226917
60 rdf:type schema:PropertyValue
61 Naa1f54f003604f7485b8725150b6f4df schema:name Aichi Forestry Research Institute, Shinshiro, Japan
62 rdf:type schema:Organization
63 Nbbbdbcf2527740f8a6bffc40d56680e8 schema:name readcube_id
64 schema:value cde7a99b23983c2787ba88658cfadcd57620312c0bd0574cd3ad65490397c6af
65 rdf:type schema:PropertyValue
66 Nbbf25db2e6204ab4883dbb35b9fdabab rdf:first sg:person.013171001141.58
67 rdf:rest Nf67e2a800f99428082adab683e29ae15
68 Nc678b45c60eb49a8a43e2c1fbe413316 rdf:first sg:person.015274257245.92
69 rdf:rest Nbbf25db2e6204ab4883dbb35b9fdabab
70 Ncafef17f413a4c60acf126fe7901af97 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nd27ea0e246fb4919bf439b991c121429 schema:name Aichi Forestry Research Institute, Shinshiro, Japan
73 rdf:type schema:Organization
74 Ne9d1a4ca977e42c0959f32856777613a schema:issueNumber 4
75 rdf:type schema:PublicationIssue
76 Nf2218e09cc624568803c07212dd867cf rdf:first sg:person.013401506065.34
77 rdf:rest N642e399bee534ec5bded563cc3a34ca8
78 Nf67e2a800f99428082adab683e29ae15 rdf:first sg:person.010413604065.75
79 rdf:rest Nf2218e09cc624568803c07212dd867cf
80 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
81 schema:name Medical and Health Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
84 schema:name Clinical Sciences
85 rdf:type schema:DefinedTerm
86 sg:grant.5848160 http://pending.schema.org/fundedItem sg:pub.10.1007/s00226-016-0817-1
87 rdf:type schema:MonetaryGrant
88 sg:journal.1031697 schema:issn 0043-7719
89 1432-5225
90 schema:name Wood Science and Technology
91 rdf:type schema:Periodical
92 sg:person.010263332125.01 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
93 schema:familyName Yamamoto
94 schema:givenName Hiroyuki
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010263332125.01
96 rdf:type schema:Person
97 sg:person.010413604065.75 schema:affiliation Naa1f54f003604f7485b8725150b6f4df
98 schema:familyName Suzuki
99 schema:givenName Yoshihito
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010413604065.75
101 rdf:type schema:Person
102 sg:person.011524063641.59 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
103 schema:familyName Sujan
104 schema:givenName K. C.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011524063641.59
106 rdf:type schema:Person
107 sg:person.012420323107.48 schema:affiliation https://www.grid.ac/institutes/grid.411247.5
108 schema:familyName Yamaji
109 schema:givenName Fabio M.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012420323107.48
111 rdf:type schema:Person
112 sg:person.013171001141.58 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
113 schema:familyName Naito
114 schema:givenName Kazuhiro
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013171001141.58
116 rdf:type schema:Person
117 sg:person.013401506065.34 schema:affiliation Nd27ea0e246fb4919bf439b991c121429
118 schema:familyName Yamashita
119 schema:givenName Noboru
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013401506065.34
121 rdf:type schema:Person
122 sg:person.015274257245.92 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
123 schema:familyName Yoshida
124 schema:givenName Masato
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015274257245.92
126 rdf:type schema:Person
127 sg:person.016702307241.43 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
128 schema:familyName Matsuo
129 schema:givenName Miyuki
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016702307241.43
131 rdf:type schema:Person
132 sg:pub.10.1007/978-3-642-24638-8_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036853642
133 https://doi.org/10.1007/978-3-642-24638-8_8
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02608613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020057511
136 https://doi.org/10.1007/bf02608613
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00107-015-0880-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042857479
139 https://doi.org/10.1007/s00107-015-0880-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00226-009-0262-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032857562
142 https://doi.org/10.1007/s00226-009-0262-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00226-015-0762-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041298119
145 https://doi.org/10.1007/s00226-015-0762-4
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s10086-003-0533-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038407425
148 https://doi.org/10.1007/s10086-003-0533-y
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s10086-006-0815-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007807204
151 https://doi.org/10.1007/s10086-006-0815-2
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s10853-008-2546-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043678410
154 https://doi.org/10.1007/s10853-008-2546-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1051/forest:19940311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969025
157 https://doi.org/10.1051/forest:19940311
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.foreco.2008.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042044671
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1017/s1464793103006377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051444542
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/bm700987q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055223732
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/jxb/erp133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043128487
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1139/x11-161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004310235
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1163/22941932-90000192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045532687
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1515/hf-2013-0153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044703645
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1515/hf.2007.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026682282
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1515/hf.2011.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000161098
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
178 schema:name Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan
179 rdf:type schema:Organization
180 https://www.grid.ac/institutes/grid.411247.5 schema:alternateName Federal University of São Carlos
181 schema:name Departamento de Ciências Ambientais, Universidade Federal de Saõ Carlos, Campus de Sorocaba, CEP 18052-780, Sorocaba, SP, Brazil
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...