Quantum and Approximate Privacy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-01

AUTHORS

Hartmut Klauck

ABSTRACT

This paper studies privacy and secure function evaluation in communication complexity. The focus is on quantum versions of the model and on protocols with only approximate privacy against honest players. We show that the privacy loss (the minimum divulged information) in computing a function can be decreased exponentially by using quantum protocols, while the class of privately computable functions (i.e., those with privacy loss 0) is not enlarged by quantum protocols. Quantum communication combined with small information leakage on the other hand makes certain functions computable (almost) privately which are not computable using either quantum communication without leakage or classical communication with leakage. We also give an example of an exponential reduction of the communication complexity of a function by allowing a privacy loss of o(1) instead of privacy loss 0. More... »

PAGES

221-246

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00224-003-1113-7

DOI

http://dx.doi.org/10.1007/s00224-003-1113-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028809689


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "School of Mathematics,\n     Institute for Advanced Study,\n     Princeton, NJ 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klauck", 
        "givenName": "Hartmut", 
        "id": "sg:person.014544441706.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014544441706.12"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "This paper studies privacy and secure function evaluation in communication complexity. The focus is on quantum versions of the model and on protocols with only approximate privacy against honest players. We show that the privacy loss (the minimum divulged information) in computing a function can be decreased exponentially by using quantum protocols, while the class of privately computable functions (i.e., those with privacy loss 0) is not enlarged by quantum protocols. Quantum communication combined with small information leakage on the other hand makes certain functions computable (almost) privately which are not computable using either quantum communication without leakage or classical communication with leakage. We also give an example of an exponential reduction of the communication complexity of a function by allowing a privacy loss of o(1) instead of privacy loss 0.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00224-003-1113-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052098", 
        "issn": [
          "1432-4350", 
          "1433-0490"
        ], 
        "name": "Theory of Computing Systems", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "Quantum and Approximate Privacy", 
    "pagination": "221-246", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "893e21d762278aa24ab00a3cb54bbcf69a61fe88a4f43890e0e754c0b515c7dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00224-003-1113-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028809689"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00224-003-1113-7", 
      "https://app.dimensions.ai/details/publication/pub.1028809689"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00224-003-1113-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00224-003-1113-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00224-003-1113-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00224-003-1113-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00224-003-1113-7'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00224-003-1113-7 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author N8c5301a39f4c44f6bdbbd97ef7d37e83
4 schema:datePublished 2004-01
5 schema:datePublishedReg 2004-01-01
6 schema:description This paper studies privacy and secure function evaluation in communication complexity. The focus is on quantum versions of the model and on protocols with only approximate privacy against honest players. We show that the privacy loss (the minimum divulged information) in computing a function can be decreased exponentially by using quantum protocols, while the class of privately computable functions (i.e., those with privacy loss 0) is not enlarged by quantum protocols. Quantum communication combined with small information leakage on the other hand makes certain functions computable (almost) privately which are not computable using either quantum communication without leakage or classical communication with leakage. We also give an example of an exponential reduction of the communication complexity of a function by allowing a privacy loss of o(1) instead of privacy loss 0.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N0c52bd597a9c41faa5ae2bafb0fe99f8
11 N22da6995464f4dab84eec0c06e6bc09d
12 sg:journal.1052098
13 schema:name Quantum and Approximate Privacy
14 schema:pagination 221-246
15 schema:productId N420cbbb7584049af87271540191c19ec
16 Nf00e8cac6be145db949f370e80b8f090
17 Nfef7ccc4a4ec4ad781f5db7d7b545c3a
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028809689
19 https://doi.org/10.1007/s00224-003-1113-7
20 schema:sdDatePublished 2019-04-11T01:02
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N92a8fbba53d141ae86ed945ef8639738
23 schema:url http://link.springer.com/10.1007/s00224-003-1113-7
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0c52bd597a9c41faa5ae2bafb0fe99f8 schema:volumeNumber 37
28 rdf:type schema:PublicationVolume
29 N22da6995464f4dab84eec0c06e6bc09d schema:issueNumber 1
30 rdf:type schema:PublicationIssue
31 N420cbbb7584049af87271540191c19ec schema:name dimensions_id
32 schema:value pub.1028809689
33 rdf:type schema:PropertyValue
34 N8c5301a39f4c44f6bdbbd97ef7d37e83 rdf:first sg:person.014544441706.12
35 rdf:rest rdf:nil
36 N92a8fbba53d141ae86ed945ef8639738 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 Nf00e8cac6be145db949f370e80b8f090 schema:name readcube_id
39 schema:value 893e21d762278aa24ab00a3cb54bbcf69a61fe88a4f43890e0e754c0b515c7dd
40 rdf:type schema:PropertyValue
41 Nfef7ccc4a4ec4ad781f5db7d7b545c3a schema:name doi
42 schema:value 10.1007/s00224-003-1113-7
43 rdf:type schema:PropertyValue
44 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
45 schema:name Information and Computing Sciences
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
48 schema:name Data Format
49 rdf:type schema:DefinedTerm
50 sg:journal.1052098 schema:issn 1432-4350
51 1433-0490
52 schema:name Theory of Computing Systems
53 rdf:type schema:Periodical
54 sg:person.014544441706.12 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
55 schema:familyName Klauck
56 schema:givenName Hartmut
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014544441706.12
58 rdf:type schema:Person
59 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
60 schema:name School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
61 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...