Ontology type: schema:ScholarlyArticle
1998-12
AUTHORSG. Penel, G. Leroy, C. Rey, E. Bres
ABSTRACT. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The ν1 phosphate band at 960 cm−1 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two ν1 PO43− bands at 947 and 957 cm−1. No significant change was observed in the ν2 and ν4 phosphate mode regions in any carbonated samples. The ν3 PO43− region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm−1 presumably due to two different hydroxyl environments. Two different bands due to the carbonate ν1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm−1, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42− and CO32− contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated. More... »
PAGES475-481
http://scigraph.springernature.com/pub.10.1007/s002239900561
DOIhttp://dx.doi.org/10.1007/s002239900561
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1035403423
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/9817941
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Apatites",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biocompatible Materials",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Spectrum Analysis, Raman",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR"
],
"type": "Organization"
},
"familyName": "Penel",
"givenName": "G.",
"id": "sg:person.0576716050.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576716050.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR"
],
"type": "Organization"
},
"familyName": "Leroy",
"givenName": "G.",
"id": "sg:person.016046526243.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046526243.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire des Mat\u00e9riaux-Physico-Chimie des Solides, Ecole Nationale Sup\u00e9rieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire des Mat\u00e9riaux-Physico-Chimie des Solides, Ecole Nationale Sup\u00e9rieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR"
],
"type": "Organization"
},
"familyName": "Rey",
"givenName": "C.",
"id": "sg:person.01344647475.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344647475.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Structure et des Propri\u00e9t\u00e9s de l'Etat Solide, LSPES URA CNRS 234, USTL B\u00e2t. C6 59655 Villeneuve d'Ascq, France, FR",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire de Structure et des Propri\u00e9t\u00e9s de l'Etat Solide, LSPES URA CNRS 234, USTL B\u00e2t. C6 59655 Villeneuve d'Ascq, France, FR"
],
"type": "Organization"
},
"familyName": "Bres",
"givenName": "E.",
"id": "sg:person.0652572471.67",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652572471.67"
],
"type": "Person"
}
],
"datePublished": "1998-12",
"datePublishedReg": "1998-12-01",
"description": "Abstract. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The \u03bd1 phosphate band at 960 cm\u22121 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two \u03bd1 PO43\u2212 bands at 947 and 957 cm\u22121. No significant change was observed in the \u03bd2 and \u03bd4 phosphate mode regions in any carbonated samples. The \u03bd3 PO43\u2212 region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm\u22121 presumably due to two different hydroxyl environments. Two different bands due to the carbonate \u03bd1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm\u22121, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42\u2212 and CO32\u2212 contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated.",
"genre": "article",
"id": "sg:pub.10.1007/s002239900561",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1089641",
"issn": [
"0171-967X",
"1432-0827"
],
"name": "Calcified Tissue International",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "63"
}
],
"keywords": [
"apatite",
"spectrum of types",
"Raman microspectrometry",
"carbonated samples",
"strong similarities",
"carbonate substitution",
"site A",
"further alterations",
"carbonate",
"Raman microspectroscopy",
"enamel spectrum",
"micrometric level",
"region",
"microspectrometry",
"biominerals",
"PO4",
"carbonation",
"biological apatite",
"sites",
"significant changes",
"lower wave numbers",
"band",
"shift",
"changes",
"wave number",
"environment",
"data",
"content",
"synthetic",
"mode",
"carbonated apatite",
"microspectroscopy",
"samples",
"different bands",
"ratio",
"alterations",
"similarity",
"spectra",
"types",
"main band",
"low levels",
"levels",
"study",
"existence",
"enamel",
"phenomenon",
"B-site",
"mode region",
"\u03bd1 mode",
"results",
"induces modifications",
"dentine",
"\u03bd2",
"type AB",
"modification",
"bone",
"\u03bd1",
"number",
"\u03bd3",
"spectral studies",
"hydroxyapatite",
"substitution",
"Ab",
"vibrational modes",
"substitution ratio",
"hydroxyl environment"
],
"name": "MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites",
"pagination": "475-481",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1035403423"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s002239900561"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"9817941"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s002239900561",
"https://app.dimensions.ai/details/publication/pub.1035403423"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:53",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_283.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s002239900561"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
20 PREDICATES
95 URIs
87 LITERALS
10 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s002239900561 | schema:about | Nc2a13b7d99df4079a23bcdd75f53ec94 |
2 | ″ | ″ | Ncb752e0aa0d64b2e84ca264245274c4b |
3 | ″ | ″ | Nfa7832979e2f4617bf61fa14ff12b403 |
4 | ″ | ″ | anzsrc-for:11 |
5 | ″ | ″ | anzsrc-for:1103 |
6 | ″ | schema:author | N1d6400dedeb64113ab2b7d13f4b1d834 |
7 | ″ | schema:datePublished | 1998-12 |
8 | ″ | schema:datePublishedReg | 1998-12-01 |
9 | ″ | schema:description | Abstract. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The ν1 phosphate band at 960 cm−1 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two ν1 PO43− bands at 947 and 957 cm−1. No significant change was observed in the ν2 and ν4 phosphate mode regions in any carbonated samples. The ν3 PO43− region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm−1 presumably due to two different hydroxyl environments. Two different bands due to the carbonate ν1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm−1, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42− and CO32− contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Naba01724e3e5499d9d5e0a9607aa3537 |
13 | ″ | ″ | Nb0db80b2bfd940f39ccb79580bdce191 |
14 | ″ | ″ | sg:journal.1089641 |
15 | ″ | schema:keywords | Ab |
16 | ″ | ″ | B-site |
17 | ″ | ″ | PO4 |
18 | ″ | ″ | Raman microspectrometry |
19 | ″ | ″ | Raman microspectroscopy |
20 | ″ | ″ | alterations |
21 | ″ | ″ | apatite |
22 | ″ | ″ | band |
23 | ″ | ″ | biological apatite |
24 | ″ | ″ | biominerals |
25 | ″ | ″ | bone |
26 | ″ | ″ | carbonate |
27 | ″ | ″ | carbonate substitution |
28 | ″ | ″ | carbonated apatite |
29 | ″ | ″ | carbonated samples |
30 | ″ | ″ | carbonation |
31 | ″ | ″ | changes |
32 | ″ | ″ | content |
33 | ″ | ″ | data |
34 | ″ | ″ | dentine |
35 | ″ | ″ | different bands |
36 | ″ | ″ | enamel |
37 | ″ | ″ | enamel spectrum |
38 | ″ | ″ | environment |
39 | ″ | ″ | existence |
40 | ″ | ″ | further alterations |
41 | ″ | ″ | hydroxyapatite |
42 | ″ | ″ | hydroxyl environment |
43 | ″ | ″ | induces modifications |
44 | ″ | ″ | levels |
45 | ″ | ″ | low levels |
46 | ″ | ″ | lower wave numbers |
47 | ″ | ″ | main band |
48 | ″ | ″ | micrometric level |
49 | ″ | ″ | microspectrometry |
50 | ″ | ″ | microspectroscopy |
51 | ″ | ″ | mode |
52 | ″ | ″ | mode region |
53 | ″ | ″ | modification |
54 | ″ | ″ | number |
55 | ″ | ″ | phenomenon |
56 | ″ | ″ | ratio |
57 | ″ | ″ | region |
58 | ″ | ″ | results |
59 | ″ | ″ | samples |
60 | ″ | ″ | shift |
61 | ″ | ″ | significant changes |
62 | ″ | ″ | similarity |
63 | ″ | ″ | site A |
64 | ″ | ″ | sites |
65 | ″ | ″ | spectra |
66 | ″ | ″ | spectral studies |
67 | ″ | ″ | spectrum of types |
68 | ″ | ″ | strong similarities |
69 | ″ | ″ | study |
70 | ″ | ″ | substitution |
71 | ″ | ″ | substitution ratio |
72 | ″ | ″ | synthetic |
73 | ″ | ″ | type AB |
74 | ″ | ″ | types |
75 | ″ | ″ | vibrational modes |
76 | ″ | ″ | wave number |
77 | ″ | ″ | ν1 |
78 | ″ | ″ | ν1 mode |
79 | ″ | ″ | ν2 |
80 | ″ | ″ | ν3 |
81 | ″ | schema:name | MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites |
82 | ″ | schema:pagination | 475-481 |
83 | ″ | schema:productId | N348cdf9283b04549ba2eec0e0d60010c |
84 | ″ | ″ | N8eacbd5aff894291a889d08268224302 |
85 | ″ | ″ | Naf822a78c9d94f038f730ba742945d13 |
86 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035403423 |
87 | ″ | ″ | https://doi.org/10.1007/s002239900561 |
88 | ″ | schema:sdDatePublished | 2022-08-04T16:53 |
89 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
90 | ″ | schema:sdPublisher | N5be655a4b8ff40f1b605f1fda6e97486 |
91 | ″ | schema:url | https://doi.org/10.1007/s002239900561 |
92 | ″ | sgo:license | sg:explorer/license/ |
93 | ″ | sgo:sdDataset | articles |
94 | ″ | rdf:type | schema:ScholarlyArticle |
95 | N1d6400dedeb64113ab2b7d13f4b1d834 | rdf:first | sg:person.0576716050.90 |
96 | ″ | rdf:rest | Ne0254c507e1b428babd96ab13e4a129b |
97 | N348cdf9283b04549ba2eec0e0d60010c | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1035403423 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N5be655a4b8ff40f1b605f1fda6e97486 | schema:name | Springer Nature - SN SciGraph project |
101 | ″ | rdf:type | schema:Organization |
102 | N7a8e2faa1efd4122adf10faebad9dac4 | rdf:first | sg:person.01344647475.38 |
103 | ″ | rdf:rest | Nc3a8bc55631b40ba8f8b3a6c90c2f9c0 |
104 | N8eacbd5aff894291a889d08268224302 | schema:name | pubmed_id |
105 | ″ | schema:value | 9817941 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | Naba01724e3e5499d9d5e0a9607aa3537 | schema:issueNumber | 6 |
108 | ″ | rdf:type | schema:PublicationIssue |
109 | Naf822a78c9d94f038f730ba742945d13 | schema:name | doi |
110 | ″ | schema:value | 10.1007/s002239900561 |
111 | ″ | rdf:type | schema:PropertyValue |
112 | Nb0db80b2bfd940f39ccb79580bdce191 | schema:volumeNumber | 63 |
113 | ″ | rdf:type | schema:PublicationVolume |
114 | Nc2a13b7d99df4079a23bcdd75f53ec94 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
115 | ″ | schema:name | Biocompatible Materials |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | Nc3a8bc55631b40ba8f8b3a6c90c2f9c0 | rdf:first | sg:person.0652572471.67 |
118 | ″ | rdf:rest | rdf:nil |
119 | Ncb752e0aa0d64b2e84ca264245274c4b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
120 | ″ | schema:name | Apatites |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | Ne0254c507e1b428babd96ab13e4a129b | rdf:first | sg:person.016046526243.72 |
123 | ″ | rdf:rest | N7a8e2faa1efd4122adf10faebad9dac4 |
124 | Nfa7832979e2f4617bf61fa14ff12b403 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
125 | ″ | schema:name | Spectrum Analysis, Raman |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
128 | ″ | schema:name | Medical and Health Sciences |
129 | ″ | rdf:type | schema:DefinedTerm |
130 | anzsrc-for:1103 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Clinical Sciences |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | sg:journal.1089641 | schema:issn | 0171-967X |
134 | ″ | ″ | 1432-0827 |
135 | ″ | schema:name | Calcified Tissue International |
136 | ″ | schema:publisher | Springer Nature |
137 | ″ | rdf:type | schema:Periodical |
138 | sg:person.01344647475.38 | schema:affiliation | grid-institutes:None |
139 | ″ | schema:familyName | Rey |
140 | ″ | schema:givenName | C. |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344647475.38 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.016046526243.72 | schema:affiliation | grid-institutes:None |
144 | ″ | schema:familyName | Leroy |
145 | ″ | schema:givenName | G. |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046526243.72 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.0576716050.90 | schema:affiliation | grid-institutes:None |
149 | ″ | schema:familyName | Penel |
150 | ″ | schema:givenName | G. |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576716050.90 |
152 | ″ | rdf:type | schema:Person |
153 | sg:person.0652572471.67 | schema:affiliation | grid-institutes:None |
154 | ″ | schema:familyName | Bres |
155 | ″ | schema:givenName | E. |
156 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652572471.67 |
157 | ″ | rdf:type | schema:Person |
158 | grid-institutes:None | schema:alternateName | L.B.M.-Microspectrométrie Raman faculté d'Odontologie, Place de Verdun 59045 Lille, France, FR |
159 | ″ | ″ | Laboratoire de Structure et des Propriétés de l'Etat Solide, LSPES URA CNRS 234, USTL Bât. C6 59655 Villeneuve d'Ascq, France, FR |
160 | ″ | ″ | Laboratoire des Matériaux-Physico-Chimie des Solides, Ecole Nationale Supérieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR |
161 | ″ | schema:name | L.B.M.-Microspectrométrie Raman faculté d'Odontologie, Place de Verdun 59045 Lille, France, FR |
162 | ″ | ″ | Laboratoire de Structure et des Propriétés de l'Etat Solide, LSPES URA CNRS 234, USTL Bât. C6 59655 Villeneuve d'Ascq, France, FR |
163 | ″ | ″ | Laboratoire des Matériaux-Physico-Chimie des Solides, Ecole Nationale Supérieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR |
164 | ″ | rdf:type | schema:Organization |