MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

G. Penel, G. Leroy, C. Rey, E. Bres

ABSTRACT

. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The ν1 phosphate band at 960 cm−1 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two ν1 PO43− bands at 947 and 957 cm−1. No significant change was observed in the ν2 and ν4 phosphate mode regions in any carbonated samples. The ν3 PO43− region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm−1 presumably due to two different hydroxyl environments. Two different bands due to the carbonate ν1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm−1, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42− and CO32− contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated. More... »

PAGES

475-481

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002239900561

DOI

http://dx.doi.org/10.1007/s002239900561

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035403423

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9817941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apatites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biocompatible Materials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penel", 
        "givenName": "G.", 
        "id": "sg:person.0576716050.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576716050.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leroy", 
        "givenName": "G.", 
        "id": "sg:person.016046526243.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046526243.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Mat\u00e9riaux-Physico-Chimie des Solides, Ecole Nationale Sup\u00e9rieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire des Mat\u00e9riaux-Physico-Chimie des Solides, Ecole Nationale Sup\u00e9rieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rey", 
        "givenName": "C.", 
        "id": "sg:person.01344647475.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344647475.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Structure et des Propri\u00e9t\u00e9s de l'Etat Solide, LSPES URA CNRS 234, USTL B\u00e2t. C6 59655 Villeneuve d'Ascq, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de Structure et des Propri\u00e9t\u00e9s de l'Etat Solide, LSPES URA CNRS 234, USTL B\u00e2t. C6 59655 Villeneuve d'Ascq, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bres", 
        "givenName": "E.", 
        "id": "sg:person.0652572471.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652572471.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "Abstract. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The \u03bd1 phosphate band at 960 cm\u22121 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two \u03bd1 PO43\u2212 bands at 947 and 957 cm\u22121. No significant change was observed in the \u03bd2 and \u03bd4 phosphate mode regions in any carbonated samples. The \u03bd3 PO43\u2212 region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm\u22121 presumably due to two different hydroxyl environments. Two different bands due to the carbonate \u03bd1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm\u22121, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42\u2212 and CO32\u2212 contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002239900561", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1089641", 
        "issn": [
          "0171-967X", 
          "1432-0827"
        ], 
        "name": "Calcified Tissue International", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "apatite", 
      "spectrum of types", 
      "Raman microspectrometry", 
      "carbonated samples", 
      "strong similarities", 
      "carbonate substitution", 
      "site A", 
      "further alterations", 
      "carbonate", 
      "Raman microspectroscopy", 
      "enamel spectrum", 
      "micrometric level", 
      "region", 
      "microspectrometry", 
      "biominerals", 
      "PO4", 
      "carbonation", 
      "biological apatite", 
      "sites", 
      "significant changes", 
      "lower wave numbers", 
      "band", 
      "shift", 
      "changes", 
      "wave number", 
      "environment", 
      "data", 
      "content", 
      "synthetic", 
      "mode", 
      "carbonated apatite", 
      "microspectroscopy", 
      "samples", 
      "different bands", 
      "ratio", 
      "alterations", 
      "similarity", 
      "spectra", 
      "types", 
      "main band", 
      "low levels", 
      "levels", 
      "study", 
      "existence", 
      "enamel", 
      "phenomenon", 
      "B-site", 
      "mode region", 
      "\u03bd1 mode", 
      "results", 
      "induces modifications", 
      "dentine", 
      "\u03bd2", 
      "type AB", 
      "modification", 
      "bone", 
      "\u03bd1", 
      "number", 
      "\u03bd3", 
      "spectral studies", 
      "hydroxyapatite", 
      "substitution", 
      "Ab", 
      "vibrational modes", 
      "substitution ratio", 
      "hydroxyl environment"
    ], 
    "name": "MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites", 
    "pagination": "475-481", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035403423"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002239900561"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9817941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002239900561", 
      "https://app.dimensions.ai/details/publication/pub.1035403423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_283.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002239900561"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      20 PREDICATES      95 URIs      87 LITERALS      10 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002239900561 schema:about Nc2a13b7d99df4079a23bcdd75f53ec94
2 Ncb752e0aa0d64b2e84ca264245274c4b
3 Nfa7832979e2f4617bf61fa14ff12b403
4 anzsrc-for:11
5 anzsrc-for:1103
6 schema:author N1d6400dedeb64113ab2b7d13f4b1d834
7 schema:datePublished 1998-12
8 schema:datePublishedReg 1998-12-01
9 schema:description Abstract. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The ν1 phosphate band at 960 cm−1 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two ν1 PO43− bands at 947 and 957 cm−1. No significant change was observed in the ν2 and ν4 phosphate mode regions in any carbonated samples. The ν3 PO43− region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm−1 presumably due to two different hydroxyl environments. Two different bands due to the carbonate ν1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm−1, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42− and CO32− contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf Naba01724e3e5499d9d5e0a9607aa3537
13 Nb0db80b2bfd940f39ccb79580bdce191
14 sg:journal.1089641
15 schema:keywords Ab
16 B-site
17 PO4
18 Raman microspectrometry
19 Raman microspectroscopy
20 alterations
21 apatite
22 band
23 biological apatite
24 biominerals
25 bone
26 carbonate
27 carbonate substitution
28 carbonated apatite
29 carbonated samples
30 carbonation
31 changes
32 content
33 data
34 dentine
35 different bands
36 enamel
37 enamel spectrum
38 environment
39 existence
40 further alterations
41 hydroxyapatite
42 hydroxyl environment
43 induces modifications
44 levels
45 low levels
46 lower wave numbers
47 main band
48 micrometric level
49 microspectrometry
50 microspectroscopy
51 mode
52 mode region
53 modification
54 number
55 phenomenon
56 ratio
57 region
58 results
59 samples
60 shift
61 significant changes
62 similarity
63 site A
64 sites
65 spectra
66 spectral studies
67 spectrum of types
68 strong similarities
69 study
70 substitution
71 substitution ratio
72 synthetic
73 type AB
74 types
75 vibrational modes
76 wave number
77 ν1
78 ν1 mode
79 ν2
80 ν3
81 schema:name MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites
82 schema:pagination 475-481
83 schema:productId N348cdf9283b04549ba2eec0e0d60010c
84 N8eacbd5aff894291a889d08268224302
85 Naf822a78c9d94f038f730ba742945d13
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035403423
87 https://doi.org/10.1007/s002239900561
88 schema:sdDatePublished 2022-08-04T16:53
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N5be655a4b8ff40f1b605f1fda6e97486
91 schema:url https://doi.org/10.1007/s002239900561
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N1d6400dedeb64113ab2b7d13f4b1d834 rdf:first sg:person.0576716050.90
96 rdf:rest Ne0254c507e1b428babd96ab13e4a129b
97 N348cdf9283b04549ba2eec0e0d60010c schema:name dimensions_id
98 schema:value pub.1035403423
99 rdf:type schema:PropertyValue
100 N5be655a4b8ff40f1b605f1fda6e97486 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N7a8e2faa1efd4122adf10faebad9dac4 rdf:first sg:person.01344647475.38
103 rdf:rest Nc3a8bc55631b40ba8f8b3a6c90c2f9c0
104 N8eacbd5aff894291a889d08268224302 schema:name pubmed_id
105 schema:value 9817941
106 rdf:type schema:PropertyValue
107 Naba01724e3e5499d9d5e0a9607aa3537 schema:issueNumber 6
108 rdf:type schema:PublicationIssue
109 Naf822a78c9d94f038f730ba742945d13 schema:name doi
110 schema:value 10.1007/s002239900561
111 rdf:type schema:PropertyValue
112 Nb0db80b2bfd940f39ccb79580bdce191 schema:volumeNumber 63
113 rdf:type schema:PublicationVolume
114 Nc2a13b7d99df4079a23bcdd75f53ec94 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Biocompatible Materials
116 rdf:type schema:DefinedTerm
117 Nc3a8bc55631b40ba8f8b3a6c90c2f9c0 rdf:first sg:person.0652572471.67
118 rdf:rest rdf:nil
119 Ncb752e0aa0d64b2e84ca264245274c4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Apatites
121 rdf:type schema:DefinedTerm
122 Ne0254c507e1b428babd96ab13e4a129b rdf:first sg:person.016046526243.72
123 rdf:rest N7a8e2faa1efd4122adf10faebad9dac4
124 Nfa7832979e2f4617bf61fa14ff12b403 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Spectrum Analysis, Raman
126 rdf:type schema:DefinedTerm
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
131 schema:name Clinical Sciences
132 rdf:type schema:DefinedTerm
133 sg:journal.1089641 schema:issn 0171-967X
134 1432-0827
135 schema:name Calcified Tissue International
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.01344647475.38 schema:affiliation grid-institutes:None
139 schema:familyName Rey
140 schema:givenName C.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344647475.38
142 rdf:type schema:Person
143 sg:person.016046526243.72 schema:affiliation grid-institutes:None
144 schema:familyName Leroy
145 schema:givenName G.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046526243.72
147 rdf:type schema:Person
148 sg:person.0576716050.90 schema:affiliation grid-institutes:None
149 schema:familyName Penel
150 schema:givenName G.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576716050.90
152 rdf:type schema:Person
153 sg:person.0652572471.67 schema:affiliation grid-institutes:None
154 schema:familyName Bres
155 schema:givenName E.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652572471.67
157 rdf:type schema:Person
158 grid-institutes:None schema:alternateName L.B.M.-Microspectrométrie Raman faculté d'Odontologie, Place de Verdun 59045 Lille, France, FR
159 Laboratoire de Structure et des Propriétés de l'Etat Solide, LSPES URA CNRS 234, USTL Bât. C6 59655 Villeneuve d'Ascq, France, FR
160 Laboratoire des Matériaux-Physico-Chimie des Solides, Ecole Nationale Supérieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR
161 schema:name L.B.M.-Microspectrométrie Raman faculté d'Odontologie, Place de Verdun 59045 Lille, France, FR
162 Laboratoire de Structure et des Propriétés de l'Etat Solide, LSPES URA CNRS 234, USTL Bât. C6 59655 Villeneuve d'Ascq, France, FR
163 Laboratoire des Matériaux-Physico-Chimie des Solides, Ecole Nationale Supérieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...