MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-12

AUTHORS

G. Penel, G. Leroy, C. Rey, E. Bres

ABSTRACT

. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The ν1 phosphate band at 960 cm−1 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two ν1 PO43− bands at 947 and 957 cm−1. No significant change was observed in the ν2 and ν4 phosphate mode regions in any carbonated samples. The ν3 PO43− region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm−1 presumably due to two different hydroxyl environments. Two different bands due to the carbonate ν1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm−1, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42− and CO32− contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated. More... »

PAGES

475-481

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002239900561

DOI

http://dx.doi.org/10.1007/s002239900561

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035403423

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9817941


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apatites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biocompatible Materials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penel", 
        "givenName": "G.", 
        "id": "sg:person.0576716050.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576716050.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "L.B.M.-Microspectrom\u00e9trie Raman facult\u00e9 d'Odontologie, Place de Verdun 59045 Lille, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leroy", 
        "givenName": "G.", 
        "id": "sg:person.016046526243.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046526243.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Mat\u00e9riaux-Physico-Chimie des Solides, Ecole Nationale Sup\u00e9rieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire des Mat\u00e9riaux-Physico-Chimie des Solides, Ecole Nationale Sup\u00e9rieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rey", 
        "givenName": "C.", 
        "id": "sg:person.01344647475.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344647475.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de Structure et des Propri\u00e9t\u00e9s de l'Etat Solide, LSPES URA CNRS 234, USTL B\u00e2t. C6 59655 Villeneuve d'Ascq, France, FR", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de Structure et des Propri\u00e9t\u00e9s de l'Etat Solide, LSPES URA CNRS 234, USTL B\u00e2t. C6 59655 Villeneuve d'Ascq, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bres", 
        "givenName": "E.", 
        "id": "sg:person.0652572471.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652572471.67"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "Abstract. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The \u03bd1 phosphate band at 960 cm\u22121 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two \u03bd1 PO43\u2212 bands at 947 and 957 cm\u22121. No significant change was observed in the \u03bd2 and \u03bd4 phosphate mode regions in any carbonated samples. The \u03bd3 PO43\u2212 region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm\u22121 presumably due to two different hydroxyl environments. Two different bands due to the carbonate \u03bd1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm\u22121, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42\u2212 and CO32\u2212 contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s002239900561", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1089641", 
        "issn": [
          "0171-967X", 
          "1432-0827"
        ], 
        "name": "Calcified Tissue International", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "apatite", 
      "spectrum of types", 
      "Raman microspectrometry", 
      "carbonated samples", 
      "strong similarities", 
      "carbonate substitution", 
      "site A", 
      "further alterations", 
      "carbonate", 
      "Raman microspectroscopy", 
      "enamel spectrum", 
      "micrometric level", 
      "region", 
      "microspectrometry", 
      "biominerals", 
      "PO4", 
      "carbonation", 
      "biological apatite", 
      "sites", 
      "significant changes", 
      "lower wave numbers", 
      "band", 
      "shift", 
      "changes", 
      "wave number", 
      "environment", 
      "data", 
      "content", 
      "synthetic", 
      "mode", 
      "carbonated apatite", 
      "microspectroscopy", 
      "samples", 
      "different bands", 
      "ratio", 
      "alterations", 
      "similarity", 
      "spectra", 
      "types", 
      "main band", 
      "low levels", 
      "levels", 
      "study", 
      "existence", 
      "enamel", 
      "phenomenon", 
      "B-site", 
      "mode region", 
      "\u03bd1 mode", 
      "results", 
      "induces modifications", 
      "dentine", 
      "\u03bd2", 
      "type AB", 
      "modification", 
      "bone", 
      "\u03bd1", 
      "number", 
      "\u03bd3", 
      "spectral studies", 
      "hydroxyapatite", 
      "substitution", 
      "Ab", 
      "vibrational modes", 
      "substitution ratio", 
      "hydroxyl environment"
    ], 
    "name": "MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites", 
    "pagination": "475-481", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035403423"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002239900561"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9817941"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002239900561", 
      "https://app.dimensions.ai/details/publication/pub.1035403423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_283.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s002239900561"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002239900561'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      20 PREDICATES      95 URIs      87 LITERALS      10 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002239900561 schema:about N2aaa89eff49e42b393528ddeec4545d7
2 Nc7594eee939e4ecfa4b74655518ba380
3 Nfba3a11e94fe4fa3869d77aad91ef615
4 anzsrc-for:11
5 anzsrc-for:1103
6 schema:author N19caa6a2a073404c893a8ed2cdba10dd
7 schema:datePublished 1998-12
8 schema:datePublishedReg 1998-12-01
9 schema:description Abstract. The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The ν1 phosphate band at 960 cm−1 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two ν1 PO43− bands at 947 and 957 cm−1. No significant change was observed in the ν2 and ν4 phosphate mode regions in any carbonated samples. The ν3 PO43− region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm−1 presumably due to two different hydroxyl environments. Two different bands due to the carbonate ν1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm−1, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42− and CO32− contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N050c539982054d8d93bf61bc7159f849
13 Na26cddb8c9b04b4888520a57f9fed19e
14 sg:journal.1089641
15 schema:keywords Ab
16 B-site
17 PO4
18 Raman microspectrometry
19 Raman microspectroscopy
20 alterations
21 apatite
22 band
23 biological apatite
24 biominerals
25 bone
26 carbonate
27 carbonate substitution
28 carbonated apatite
29 carbonated samples
30 carbonation
31 changes
32 content
33 data
34 dentine
35 different bands
36 enamel
37 enamel spectrum
38 environment
39 existence
40 further alterations
41 hydroxyapatite
42 hydroxyl environment
43 induces modifications
44 levels
45 low levels
46 lower wave numbers
47 main band
48 micrometric level
49 microspectrometry
50 microspectroscopy
51 mode
52 mode region
53 modification
54 number
55 phenomenon
56 ratio
57 region
58 results
59 samples
60 shift
61 significant changes
62 similarity
63 site A
64 sites
65 spectra
66 spectral studies
67 spectrum of types
68 strong similarities
69 study
70 substitution
71 substitution ratio
72 synthetic
73 type AB
74 types
75 vibrational modes
76 wave number
77 ν1
78 ν1 mode
79 ν2
80 ν3
81 schema:name MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites
82 schema:pagination 475-481
83 schema:productId N0a4d23e19eba4abb8d8582a674cdd33a
84 N9efb2bb082844e8d803c31369abe05d5
85 Nb2d51a95ff324efbbe2faacb787729d7
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035403423
87 https://doi.org/10.1007/s002239900561
88 schema:sdDatePublished 2022-08-04T16:53
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Ne16ebfbfaf7c4b779c31bd45fc3acfe6
91 schema:url https://doi.org/10.1007/s002239900561
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N050c539982054d8d93bf61bc7159f849 schema:issueNumber 6
96 rdf:type schema:PublicationIssue
97 N082870bd98f04bbd91864fa07cdc6e82 rdf:first sg:person.016046526243.72
98 rdf:rest N3cc28c3e5cf54305957a8c6d6995c2e8
99 N0a4d23e19eba4abb8d8582a674cdd33a schema:name pubmed_id
100 schema:value 9817941
101 rdf:type schema:PropertyValue
102 N19caa6a2a073404c893a8ed2cdba10dd rdf:first sg:person.0576716050.90
103 rdf:rest N082870bd98f04bbd91864fa07cdc6e82
104 N2aaa89eff49e42b393528ddeec4545d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Biocompatible Materials
106 rdf:type schema:DefinedTerm
107 N3cc28c3e5cf54305957a8c6d6995c2e8 rdf:first sg:person.01344647475.38
108 rdf:rest N47c018a5a5fe4deba75652a7129db0e6
109 N47c018a5a5fe4deba75652a7129db0e6 rdf:first sg:person.0652572471.67
110 rdf:rest rdf:nil
111 N9efb2bb082844e8d803c31369abe05d5 schema:name doi
112 schema:value 10.1007/s002239900561
113 rdf:type schema:PropertyValue
114 Na26cddb8c9b04b4888520a57f9fed19e schema:volumeNumber 63
115 rdf:type schema:PublicationVolume
116 Nb2d51a95ff324efbbe2faacb787729d7 schema:name dimensions_id
117 schema:value pub.1035403423
118 rdf:type schema:PropertyValue
119 Nc7594eee939e4ecfa4b74655518ba380 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Apatites
121 rdf:type schema:DefinedTerm
122 Ne16ebfbfaf7c4b779c31bd45fc3acfe6 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nfba3a11e94fe4fa3869d77aad91ef615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Spectrum Analysis, Raman
126 rdf:type schema:DefinedTerm
127 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
128 schema:name Medical and Health Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
131 schema:name Clinical Sciences
132 rdf:type schema:DefinedTerm
133 sg:journal.1089641 schema:issn 0171-967X
134 1432-0827
135 schema:name Calcified Tissue International
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.01344647475.38 schema:affiliation grid-institutes:None
139 schema:familyName Rey
140 schema:givenName C.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344647475.38
142 rdf:type schema:Person
143 sg:person.016046526243.72 schema:affiliation grid-institutes:None
144 schema:familyName Leroy
145 schema:givenName G.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016046526243.72
147 rdf:type schema:Person
148 sg:person.0576716050.90 schema:affiliation grid-institutes:None
149 schema:familyName Penel
150 schema:givenName G.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576716050.90
152 rdf:type schema:Person
153 sg:person.0652572471.67 schema:affiliation grid-institutes:None
154 schema:familyName Bres
155 schema:givenName E.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652572471.67
157 rdf:type schema:Person
158 grid-institutes:None schema:alternateName L.B.M.-Microspectrométrie Raman faculté d'Odontologie, Place de Verdun 59045 Lille, France, FR
159 Laboratoire de Structure et des Propriétés de l'Etat Solide, LSPES URA CNRS 234, USTL Bât. C6 59655 Villeneuve d'Ascq, France, FR
160 Laboratoire des Matériaux-Physico-Chimie des Solides, Ecole Nationale Supérieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR
161 schema:name L.B.M.-Microspectrométrie Raman faculté d'Odontologie, Place de Verdun 59045 Lille, France, FR
162 Laboratoire de Structure et des Propriétés de l'Etat Solide, LSPES URA CNRS 234, USTL Bât. C6 59655 Villeneuve d'Ascq, France, FR
163 Laboratoire des Matériaux-Physico-Chimie des Solides, Ecole Nationale Supérieure de Chimie, UPRESA 5071, 38, rue des 36 Ponts, 31400 Toulouse, France, FR
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...