Logarithm laws for flows on homogeneous spaces View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-12

AUTHORS

D.Y. Kleinbock, G.A. Margulis

ABSTRACT

In this paper we generalize and sharpen D. Sullivan’s logarithm law for geodesics by specifying conditions on a sequence of subsets {At | t∈ℕ} of a homogeneous space G/Γ (G a semisimple Lie group, Γ an irreducible lattice) and a sequence of elements ft of G under which #{t∈ℕ | ftx∈At} is infinite for a.e. x∈G/Γ. The main tool is exponential decay of correlation coefficients of smooth functions on G/Γ. Besides the general (higher rank) version of Sullivan’s result, as a consequence we obtain a new proof of the classical Khinchin-Groshev theorem on simultaneous Diophantine approximation, and settle a conjecture recently made by M. Skriganov. More... »

PAGES

451-494

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002220050350

DOI

http://dx.doi.org/10.1007/s002220050350

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016687602


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA\u00b6 (e-mail: kleinboc@math.rutgers.edu), USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kleinbock", 
        "givenName": "D.Y.", 
        "id": "sg:person.013076036113.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mathematics, Yale University, New Haven, CT 06520, USA\u00b6 (e-mail: margulis@math.yale.edu), USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Margulis", 
        "givenName": "G.A.", 
        "id": "sg:person.01247226110.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-12", 
    "datePublishedReg": "1999-12-01", 
    "description": "In this paper we generalize and sharpen D. Sullivan\u2019s logarithm law for geodesics by specifying conditions on a sequence of subsets {At | t\u2208\u2115} of a homogeneous space G/\u0393 (G a semisimple Lie group, \u0393 an irreducible lattice) and a sequence of elements ft of G under which #{t\u2208\u2115 | ftx\u2208At} is infinite for a.e. x\u2208G/\u0393. The main tool is exponential decay of correlation coefficients of smooth functions on G/\u0393. Besides the general (higher rank) version of Sullivan\u2019s result, as a consequence we obtain a new proof of the classical Khinchin-Groshev theorem on simultaneous Diophantine approximation, and settle a conjecture recently made by M. Skriganov.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002220050350", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136369", 
        "issn": [
          "0020-9910", 
          "1432-1297"
        ], 
        "name": "Inventiones Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "138"
      }
    ], 
    "name": "Logarithm laws for flows on homogeneous spaces", 
    "pagination": "451-494", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f82683d514ed5eda1bb9f3f748281dca6f4ab972cfcd2be815c1e8ca3046bb6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002220050350"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016687602"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002220050350", 
      "https://app.dimensions.ai/details/publication/pub.1016687602"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13109_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs002220050350"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002220050350'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002220050350'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002220050350'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002220050350'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002220050350 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N18069bed9ee84f5a9d819bf2d960b9d8
4 schema:datePublished 1999-12
5 schema:datePublishedReg 1999-12-01
6 schema:description In this paper we generalize and sharpen D. Sullivan’s logarithm law for geodesics by specifying conditions on a sequence of subsets {At | t∈ℕ} of a homogeneous space G/Γ (G a semisimple Lie group, Γ an irreducible lattice) and a sequence of elements ft of G under which #{t∈ℕ | ftx∈At} is infinite for a.e. x∈G/Γ. The main tool is exponential decay of correlation coefficients of smooth functions on G/Γ. Besides the general (higher rank) version of Sullivan’s result, as a consequence we obtain a new proof of the classical Khinchin-Groshev theorem on simultaneous Diophantine approximation, and settle a conjecture recently made by M. Skriganov.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N4c2adaf04b3b4640adddb1896ec6c7f1
11 N51d7a7552be24fc38ac16b395be33588
12 sg:journal.1136369
13 schema:name Logarithm laws for flows on homogeneous spaces
14 schema:pagination 451-494
15 schema:productId N91259ce8fc8b4bb3b2b479bbff398912
16 N93f2ff3c28a4442cb3a6ce325b7bf402
17 Nea7dea71d5b642feaf7f7d4599a19eb7
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016687602
19 https://doi.org/10.1007/s002220050350
20 schema:sdDatePublished 2019-04-11T14:34
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nfb61f05f598d4a30b20aca8c86b7b5dd
23 schema:url https://link.springer.com/10.1007%2Fs002220050350
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N18069bed9ee84f5a9d819bf2d960b9d8 rdf:first sg:person.013076036113.18
28 rdf:rest N43721c2e802541a4b85d11286bbb41d2
29 N43721c2e802541a4b85d11286bbb41d2 rdf:first sg:person.01247226110.63
30 rdf:rest rdf:nil
31 N4c2adaf04b3b4640adddb1896ec6c7f1 schema:volumeNumber 138
32 rdf:type schema:PublicationVolume
33 N51d7a7552be24fc38ac16b395be33588 schema:issueNumber 3
34 rdf:type schema:PublicationIssue
35 N91259ce8fc8b4bb3b2b479bbff398912 schema:name doi
36 schema:value 10.1007/s002220050350
37 rdf:type schema:PropertyValue
38 N93f2ff3c28a4442cb3a6ce325b7bf402 schema:name readcube_id
39 schema:value 4f82683d514ed5eda1bb9f3f748281dca6f4ab972cfcd2be815c1e8ca3046bb6
40 rdf:type schema:PropertyValue
41 Nea7dea71d5b642feaf7f7d4599a19eb7 schema:name dimensions_id
42 schema:value pub.1016687602
43 rdf:type schema:PropertyValue
44 Nfb61f05f598d4a30b20aca8c86b7b5dd schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136369 schema:issn 0020-9910
53 1432-1297
54 schema:name Inventiones Mathematicae
55 rdf:type schema:Periodical
56 sg:person.01247226110.63 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
57 schema:familyName Margulis
58 schema:givenName G.A.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247226110.63
60 rdf:type schema:Person
61 sg:person.013076036113.18 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
62 schema:familyName Kleinbock
63 schema:givenName D.Y.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013076036113.18
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
67 schema:name Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA¶ (e-mail: kleinboc@math.rutgers.edu), USA
68 rdf:type schema:Organization
69 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
70 schema:name Department of Mathematics, Yale University, New Haven, CT 06520, USA¶ (e-mail: margulis@math.yale.edu), USA
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...