Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-03

AUTHORS

A. Soffer, M. I. Weinstein

ABSTRACT

We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian and are perturbations of linear dispersive equations. The unperturbed dynamical system has a bound state, a spatially localized and time periodic solution. We show that, for generic nonlinear Hamiltonian perturbations, all small amplitude solutions decay to zero as time tends to infinity at an anomalously slow rate. In particular, spatially localized and time-periodic solutions of the linear problem are destroyed by generic nonlinear Hamiltonian perturbations via slow radiation of energy to infinity. These solutions can therefore be thought of as metastable states. The main mechanism is a nonlinear resonant interaction of bound states (eigenfunctions) and radiation (continuous spectral modes), leading to energy transfer from the discrete to continuum modes. This is in contrast to the KAM theory in which appropriate nonresonance conditions imply the persistence of invariant tori. A hypothesis ensuring that such a resonance takes place is a nonlinear analogue of the Fermi golden rule, arising in the theory of resonances in quantum mechanics. The techniques used involve: (i) a time-dependent method developed by the authors for the treatment of the quantum resonance problem and perturbations of embedded eigenvalues, (ii) a generalization of the Hamiltonian normal form appropriate for infinite dimensional dispersive systems and (iii) ideas from scattering theory. The arguments are quite general and we expect them to apply to a large class of systems which can be viewed as the interaction of finite dimensional and infinite dimensional dispersive dynamical systems, or as a system of particles coupled to a field. More... »

PAGES

9-74

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002220050303

DOI

http://dx.doi.org/10.1007/s002220050303

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041582967


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mathematics, Rutgers University, New Brunswick, NJ, USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soffer", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, Ann Arbor, MI USA, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weinstein", 
        "givenName": "M. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/aphy.1995.1040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008789138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02108081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013673099", 
          "https://doi.org/10.1007/bf02108081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02108081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013673099", 
          "https://doi.org/10.1007/bf02108081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1983-15105-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013868537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014256226", 
          "https://doi.org/10.1007/bf02099172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014256226", 
          "https://doi.org/10.1007/bf02099172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160460202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016821003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160460202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016821003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309908821502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018385854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(91)90440-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018654791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(91)90440-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018654791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01942331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024542328", 
          "https://doi.org/10.1007/bf01942331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01942331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024542328", 
          "https://doi.org/10.1007/bf01942331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160461102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025537368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160461102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025537368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61243-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025538248", 
          "https://doi.org/10.1007/978-3-642-61243-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61243-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025538248", 
          "https://doi.org/10.1007/978-3-642-61243-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160470803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032595796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160470803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032595796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01215117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033851383", 
          "https://doi.org/10.1007/bf01215117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01215117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033851383", 
          "https://doi.org/10.1007/bf01215117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s1-32.1.208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034604796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037387280", 
          "https://doi.org/10.1007/bf01218585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01218585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037387280", 
          "https://doi.org/10.1007/bf01218585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(84)90110-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046794076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(96)00156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047253707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160470107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049285659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160470107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049285659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19870670703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050353990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(87)90044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051929926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3167759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062105346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400853076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096908057"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian and are perturbations of linear dispersive equations. The unperturbed dynamical system has a bound state, a spatially localized and time periodic solution. We show that, for generic nonlinear Hamiltonian perturbations, all small amplitude solutions decay to zero as time tends to infinity at an anomalously slow rate. In particular, spatially localized and time-periodic solutions of the linear problem are destroyed by generic nonlinear Hamiltonian perturbations via slow radiation of energy to infinity. These solutions can therefore be thought of as metastable states. The main mechanism is a nonlinear resonant interaction of bound states (eigenfunctions) and radiation (continuous spectral modes), leading to energy transfer from the discrete to continuum modes. This is in contrast to the KAM theory in which appropriate nonresonance conditions imply the persistence of invariant tori. A hypothesis ensuring that such a resonance takes place is a nonlinear analogue of the Fermi golden rule, arising in the theory of resonances in quantum mechanics. The techniques used involve: (i) a time-dependent method developed by the authors for the treatment of the quantum resonance problem and perturbations of embedded eigenvalues, (ii) a generalization of the Hamiltonian normal form appropriate for infinite dimensional dispersive systems and (iii) ideas from scattering theory. The arguments are quite general and we expect them to apply to a large class of systems which can be viewed as the interaction of finite dimensional and infinite dimensional dispersive dynamical systems, or as a system of particles coupled to a field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002220050303", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136369", 
        "issn": [
          "0020-9910", 
          "1432-1297"
        ], 
        "name": "Inventiones Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "136"
      }
    ], 
    "name": "Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations", 
    "pagination": "9-74", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c61649b0803dddb62dfa41664dc1f9c871ba9f4a222bd3c45a63185eb419ab80"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002220050303"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041582967"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002220050303", 
      "https://app.dimensions.ai/details/publication/pub.1041582967"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s002220050303"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002220050303'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002220050303'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002220050303'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002220050303'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002220050303 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N588812db7c954f939e6d5d6c2d96b1b6
4 schema:citation sg:pub.10.1007/978-3-642-61243-5_4
5 sg:pub.10.1007/bf01215117
6 sg:pub.10.1007/bf01218585
7 sg:pub.10.1007/bf01942331
8 sg:pub.10.1007/bf02099172
9 sg:pub.10.1007/bf02108081
10 https://doi.org/10.1002/cpa.3160460202
11 https://doi.org/10.1002/cpa.3160461102
12 https://doi.org/10.1002/cpa.3160470107
13 https://doi.org/10.1002/cpa.3160470803
14 https://doi.org/10.1002/zamm.19870670703
15 https://doi.org/10.1006/aphy.1995.1040
16 https://doi.org/10.1016/0022-1236(87)90044-9
17 https://doi.org/10.1016/0022-247x(84)90110-0
18 https://doi.org/10.1016/0375-9601(91)90440-j
19 https://doi.org/10.1016/s0167-2789(96)00156-x
20 https://doi.org/10.1080/03605309908821502
21 https://doi.org/10.1090/s0273-0979-1983-15105-4
22 https://doi.org/10.1112/plms/s1-32.1.208
23 https://doi.org/10.1115/1.3167759
24 https://doi.org/10.1515/9781400853076
25 https://doi.org/10.2307/1971301
26 schema:datePublished 1999-03
27 schema:datePublishedReg 1999-03-01
28 schema:description We consider a class of nonlinear Klein-Gordon equations which are Hamiltonian and are perturbations of linear dispersive equations. The unperturbed dynamical system has a bound state, a spatially localized and time periodic solution. We show that, for generic nonlinear Hamiltonian perturbations, all small amplitude solutions decay to zero as time tends to infinity at an anomalously slow rate. In particular, spatially localized and time-periodic solutions of the linear problem are destroyed by generic nonlinear Hamiltonian perturbations via slow radiation of energy to infinity. These solutions can therefore be thought of as metastable states. The main mechanism is a nonlinear resonant interaction of bound states (eigenfunctions) and radiation (continuous spectral modes), leading to energy transfer from the discrete to continuum modes. This is in contrast to the KAM theory in which appropriate nonresonance conditions imply the persistence of invariant tori. A hypothesis ensuring that such a resonance takes place is a nonlinear analogue of the Fermi golden rule, arising in the theory of resonances in quantum mechanics. The techniques used involve: (i) a time-dependent method developed by the authors for the treatment of the quantum resonance problem and perturbations of embedded eigenvalues, (ii) a generalization of the Hamiltonian normal form appropriate for infinite dimensional dispersive systems and (iii) ideas from scattering theory. The arguments are quite general and we expect them to apply to a large class of systems which can be viewed as the interaction of finite dimensional and infinite dimensional dispersive dynamical systems, or as a system of particles coupled to a field.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N6f2a48cc7fe74829b033731274af3e54
33 N81e70eaa15464a54b22cd35158b6e302
34 sg:journal.1136369
35 schema:name Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations
36 schema:pagination 9-74
37 schema:productId N7c44c3c7cdd74366a4f8b8300c063434
38 Ne48b4de7ab7243a1b2dc4c8061cdef53
39 Nea8a06e3f2834262a5b483228dc56122
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041582967
41 https://doi.org/10.1007/s002220050303
42 schema:sdDatePublished 2019-04-10T20:42
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nd1cba806e3fb45f2b56b897b676cb8bb
45 schema:url http://link.springer.com/10.1007/s002220050303
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N42de2d0e8f634d6ab29106e1d640de09 rdf:first Ne30b87152e814410b82937b0cf94337f
50 rdf:rest rdf:nil
51 N588812db7c954f939e6d5d6c2d96b1b6 rdf:first Nf8f521cc41d049e7a1076abf94d19a86
52 rdf:rest N42de2d0e8f634d6ab29106e1d640de09
53 N6f2a48cc7fe74829b033731274af3e54 schema:volumeNumber 136
54 rdf:type schema:PublicationVolume
55 N7c44c3c7cdd74366a4f8b8300c063434 schema:name doi
56 schema:value 10.1007/s002220050303
57 rdf:type schema:PropertyValue
58 N81e70eaa15464a54b22cd35158b6e302 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 Nd1cba806e3fb45f2b56b897b676cb8bb schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Ne30b87152e814410b82937b0cf94337f schema:affiliation https://www.grid.ac/institutes/grid.214458.e
63 schema:familyName Weinstein
64 schema:givenName M. I.
65 rdf:type schema:Person
66 Ne48b4de7ab7243a1b2dc4c8061cdef53 schema:name readcube_id
67 schema:value c61649b0803dddb62dfa41664dc1f9c871ba9f4a222bd3c45a63185eb419ab80
68 rdf:type schema:PropertyValue
69 Nea8a06e3f2834262a5b483228dc56122 schema:name dimensions_id
70 schema:value pub.1041582967
71 rdf:type schema:PropertyValue
72 Nf8f521cc41d049e7a1076abf94d19a86 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
73 schema:familyName Soffer
74 schema:givenName A.
75 rdf:type schema:Person
76 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
77 schema:name Mathematical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
80 schema:name Pure Mathematics
81 rdf:type schema:DefinedTerm
82 sg:journal.1136369 schema:issn 0020-9910
83 1432-1297
84 schema:name Inventiones Mathematicae
85 rdf:type schema:Periodical
86 sg:pub.10.1007/978-3-642-61243-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025538248
87 https://doi.org/10.1007/978-3-642-61243-5_4
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01215117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033851383
90 https://doi.org/10.1007/bf01215117
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf01218585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037387280
93 https://doi.org/10.1007/bf01218585
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf01942331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024542328
96 https://doi.org/10.1007/bf01942331
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02099172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014256226
99 https://doi.org/10.1007/bf02099172
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02108081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013673099
102 https://doi.org/10.1007/bf02108081
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/cpa.3160460202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016821003
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/cpa.3160461102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025537368
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/cpa.3160470107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049285659
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/cpa.3160470803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032595796
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/zamm.19870670703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050353990
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1006/aphy.1995.1040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008789138
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0022-1236(87)90044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051929926
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/0022-247x(84)90110-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046794076
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0375-9601(91)90440-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1018654791
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/s0167-2789(96)00156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047253707
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/03605309908821502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018385854
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1090/s0273-0979-1983-15105-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013868537
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1112/plms/s1-32.1.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034604796
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1115/1.3167759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062105346
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1515/9781400853076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096908057
133 rdf:type schema:CreativeWork
134 https://doi.org/10.2307/1971301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676586
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
137 schema:name Department of Mathematics, University of Michigan, Ann Arbor, MI USA, US
138 rdf:type schema:Organization
139 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
140 schema:name Department of Mathematics, Rutgers University, New Brunswick, NJ, USA, US
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...