Canonical bases arising from quantum symmetric pairs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04-19

AUTHORS

Huanchen Bao, Weiqiang Wang

ABSTRACT

We develop a general theory of canonical bases for quantum symmetric pairs (U,Uı) with parameters of arbitrary finite type. We construct new canonical bases for the finite-dimensional simple U-modules and their tensor products regarded as Uı-modules. We also construct a canonical basis for the modified form of the ıquantum group Uı. To that end, we establish several new structural results on quantum symmetric pairs, such as bilinear forms, braid group actions, integral forms, Levi subalgebras (of real rank one), and integrality of the intertwiners. More... »

PAGES

1-79

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00222-018-0801-5

DOI

http://dx.doi.org/10.1007/s00222-018-0801-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103464169


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Mathematics, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bao", 
        "givenName": "Huanchen", 
        "id": "sg:person.010570752314.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570752314.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Mathematics, University of Virginia, 22904, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Weiqiang", 
        "id": "sg:person.01301012154.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301012154.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aim.2003.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011985104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle-2016-0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019453581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.17.8177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024306081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2014.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025516789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-1990-1035415-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027548652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jabr.1999.8015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031261846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-003-0719-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031536843", 
          "https://doi.org/10.1007/s00031-003-0719-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2011.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032913885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1041412446", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74334-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041412446", 
          "https://doi.org/10.1007/978-3-642-74334-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74334-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041412446", 
          "https://doi.org/10.1007/978-3-642-74334-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4717-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051089613", 
          "https://doi.org/10.1007/978-0-8176-4717-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4717-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051089613", 
          "https://doi.org/10.1007/978-0-8176-4717-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-1991-1088333-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053506412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/ert/469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059342149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-90-06124-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-91-06321-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-94-07317-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/ajm.2016.0051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065022539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/ert/505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091690094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-017-9447-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092444655", 
          "https://doi.org/10.1007/s00031-017-9447-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-19", 
    "datePublishedReg": "2018-04-19", 
    "description": "We develop a general theory of canonical bases for quantum symmetric pairs (U,U\u0131) with parameters of arbitrary finite type. We construct new canonical bases for the finite-dimensional simple U-modules and their tensor products regarded as U\u0131-modules. We also construct a canonical basis for the modified form of the \u0131quantum group U\u0131. To that end, we establish several new structural results on quantum symmetric pairs, such as bilinear forms, braid group actions, integral forms, Levi subalgebras (of real rank one), and integrality of the intertwiners.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00222-018-0801-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136369", 
        "issn": [
          "0020-9910", 
          "1432-1297"
        ], 
        "name": "Inventiones Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "213"
      }
    ], 
    "name": "Canonical bases arising from quantum symmetric pairs", 
    "pagination": "1-79", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "78541f5ee5b0217035e9445222b541365106317d312cc5473dd65e9913b278f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00222-018-0801-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103464169"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00222-018-0801-5", 
      "https://app.dimensions.ai/details/publication/pub.1103464169"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87083_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00222-018-0801-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00222-018-0801-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00222-018-0801-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00222-018-0801-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00222-018-0801-5'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      45 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00222-018-0801-5 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N3e2addda7c2f4ee880991b18af1a7259
4 schema:citation sg:pub.10.1007/978-0-8176-4717-9
5 sg:pub.10.1007/978-3-642-74334-4
6 sg:pub.10.1007/s00031-003-0719-9
7 sg:pub.10.1007/s00031-017-9447-4
8 https://app.dimensions.ai/details/publication/pub.1041412446
9 https://doi.org/10.1006/jabr.1999.8015
10 https://doi.org/10.1016/j.aim.2003.11.007
11 https://doi.org/10.1016/j.aim.2014.08.010
12 https://doi.org/10.1016/j.jalgebra.2011.04.001
13 https://doi.org/10.1073/pnas.89.17.8177
14 https://doi.org/10.1090/ert/469
15 https://doi.org/10.1090/ert/505
16 https://doi.org/10.1090/s0894-0347-1990-1035415-6
17 https://doi.org/10.1090/s0894-0347-1991-1088333-2
18 https://doi.org/10.1215/s0012-7094-90-06124-1
19 https://doi.org/10.1215/s0012-7094-91-06321-0
20 https://doi.org/10.1215/s0012-7094-94-07317-1
21 https://doi.org/10.1353/ajm.2016.0051
22 https://doi.org/10.1515/crelle-2016-0012
23 schema:datePublished 2018-04-19
24 schema:datePublishedReg 2018-04-19
25 schema:description We develop a general theory of canonical bases for quantum symmetric pairs (U,Uı) with parameters of arbitrary finite type. We construct new canonical bases for the finite-dimensional simple U-modules and their tensor products regarded as Uı-modules. We also construct a canonical basis for the modified form of the ıquantum group Uı. To that end, we establish several new structural results on quantum symmetric pairs, such as bilinear forms, braid group actions, integral forms, Levi subalgebras (of real rank one), and integrality of the intertwiners.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N94e57a7e35604099a5e42791c8f06bca
30 Ne71251982c0647508477da196c7cb2ae
31 sg:journal.1136369
32 schema:name Canonical bases arising from quantum symmetric pairs
33 schema:pagination 1-79
34 schema:productId Na83574a8881c436da31608f0ca78a015
35 Nd8c32e097527483b9f626eedbb0a83ee
36 Nef4860cdd9894563a7106edaf77be437
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103464169
38 https://doi.org/10.1007/s00222-018-0801-5
39 schema:sdDatePublished 2019-04-11T12:22
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N7760aecc96f143fb82c8429fbcff5ccd
42 schema:url https://link.springer.com/10.1007%2Fs00222-018-0801-5
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N3e2addda7c2f4ee880991b18af1a7259 rdf:first sg:person.010570752314.98
47 rdf:rest Na0ecb99f1d3f4506884e3bfee71c10db
48 N7760aecc96f143fb82c8429fbcff5ccd schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N94e57a7e35604099a5e42791c8f06bca schema:issueNumber 3
51 rdf:type schema:PublicationIssue
52 Na0ecb99f1d3f4506884e3bfee71c10db rdf:first sg:person.01301012154.81
53 rdf:rest rdf:nil
54 Na83574a8881c436da31608f0ca78a015 schema:name readcube_id
55 schema:value 78541f5ee5b0217035e9445222b541365106317d312cc5473dd65e9913b278f0
56 rdf:type schema:PropertyValue
57 Nd8c32e097527483b9f626eedbb0a83ee schema:name dimensions_id
58 schema:value pub.1103464169
59 rdf:type schema:PropertyValue
60 Ne71251982c0647508477da196c7cb2ae schema:volumeNumber 213
61 rdf:type schema:PublicationVolume
62 Nef4860cdd9894563a7106edaf77be437 schema:name doi
63 schema:value 10.1007/s00222-018-0801-5
64 rdf:type schema:PropertyValue
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
69 schema:name Quantum Physics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136369 schema:issn 0020-9910
72 1432-1297
73 schema:name Inventiones Mathematicae
74 rdf:type schema:Periodical
75 sg:person.010570752314.98 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
76 schema:familyName Bao
77 schema:givenName Huanchen
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570752314.98
79 rdf:type schema:Person
80 sg:person.01301012154.81 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
81 schema:familyName Wang
82 schema:givenName Weiqiang
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301012154.81
84 rdf:type schema:Person
85 sg:pub.10.1007/978-0-8176-4717-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051089613
86 https://doi.org/10.1007/978-0-8176-4717-9
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-642-74334-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041412446
89 https://doi.org/10.1007/978-3-642-74334-4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00031-003-0719-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031536843
92 https://doi.org/10.1007/s00031-003-0719-9
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00031-017-9447-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092444655
95 https://doi.org/10.1007/s00031-017-9447-4
96 rdf:type schema:CreativeWork
97 https://app.dimensions.ai/details/publication/pub.1041412446 schema:CreativeWork
98 https://doi.org/10.1006/jabr.1999.8015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031261846
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.aim.2003.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011985104
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.aim.2014.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025516789
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.jalgebra.2011.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032913885
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1073/pnas.89.17.8177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024306081
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1090/ert/469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059342149
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1090/ert/505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091690094
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1090/s0894-0347-1990-1035415-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027548652
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1090/s0894-0347-1991-1088333-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053506412
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1215/s0012-7094-90-06124-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419626
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1215/s0012-7094-91-06321-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419691
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1215/s0012-7094-94-07317-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419945
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1353/ajm.2016.0051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065022539
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1515/crelle-2016-0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019453581
125 rdf:type schema:CreativeWork
126 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
127 schema:name Department of Mathematics, University of Maryland, 20742, College Park, MD, USA
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
130 schema:name Department of Mathematics, University of Virginia, 22904, Charlottesville, VA, USA
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...