Non-minimality of corners in subriemannian geometry View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Eero Hakavuori, Enrico Le Donne

ABSTRACT

We give a short solution to one of the main open problems in subriemannian geometry. Namely, we prove that length minimizers do not have corner-type singularities. With this result we solve Problem II of Agrachev’s list, and provide the first general result toward the 30-year-old open problem of regularity of subriemannian geodesics. More... »

PAGES

693-704

References to SciGraph publications

  • 2014-01. Regularity results for sub-Riemannian geodesics in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1996. A cornucopia of four-dimensional abnormal sub-Riemannian minimizers in SUB-RIEMANNIAN GEOMETRY
  • 2014. Some open problems in GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY
  • 1996. Carnot-Carathéodory spaces seen from within in SUB-RIEMANNIAN GEOMETRY
  • 2014-12. A family of nonminimizing abnormal curves in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • 2007. Metric Structures for Riemannian and Non-Riemannian Spaces in NONE
  • 1993-12. Rigidity of integral curves of rank 2 distributions in INVENTIONES MATHEMATICAE
  • 2004. Control Theory from the Geometric Viewpoint in NONE
  • 2008-07. End-Point Equations and Regularity of Sub-Riemannian Geodesics in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2013-08. Extremal Curves in Nilpotent Lie Groups in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 1983. Foundations of Differentiable Manifolds and Lie Groups in NONE
  • 2014. The regularity problem for sub-Riemannian geodesics in GEOMETRIC CONTROL THEORY AND SUB-RIEMANNIAN GEOMETRY
  • 1995-10. A note on Carnot geodesics in nilpotent Lie groups in JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS
  • 2014. Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning in NONE
  • 2014. Sub-Riemannian Geometry and Optimal Transport in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00222-016-0661-9

    DOI

    http://dx.doi.org/10.1007/s00222-016-0661-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032824455


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, 40014, Jyv\u00e4skyl\u00e4, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hakavuori", 
            "givenName": "Eero", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Jyv\u00e4skyl\u00e4", 
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": [
                "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, 40014, Jyv\u00e4skyl\u00e4, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Le\u00a0Donne", 
            "givenName": "Enrico", 
            "id": "sg:person.01330732167.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330732167.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-0348-9210-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000282228", 
              "https://doi.org/10.1007/978-3-0348-9210-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9210-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000282228", 
              "https://doi.org/10.1007/978-3-0348-9210-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4583-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009297461", 
              "https://doi.org/10.1007/978-0-8176-4583-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1009297461", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-08690-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016488067", 
              "https://doi.org/10.1007/978-3-319-08690-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-08690-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016488067", 
              "https://doi.org/10.1007/978-3-319-08690-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1799-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017267575", 
              "https://doi.org/10.1007/978-1-4757-1799-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1799-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017267575", 
              "https://doi.org/10.1007/978-1-4757-1799-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02255895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017964146", 
              "https://doi.org/10.1007/bf02255895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02255895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017964146", 
              "https://doi.org/10.1007/bf02255895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01232676", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018984199", 
              "https://doi.org/10.1007/bf01232676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-02132-4_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021545058", 
              "https://doi.org/10.1007/978-3-319-02132-4_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-012-0592-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021794037", 
              "https://doi.org/10.1007/s00526-012-0592-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-04804-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027975594", 
              "https://doi.org/10.1007/978-3-319-04804-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-04804-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027975594", 
              "https://doi.org/10.1007/978-3-319-04804-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-02132-4_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029555158", 
              "https://doi.org/10.1007/978-3-319-02132-4_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9210-0_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029905873", 
              "https://doi.org/10.1007/978-3-0348-9210-0_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9210-0_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029905873", 
              "https://doi.org/10.1007/978-3-0348-9210-0_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00039-008-0662-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031469963", 
              "https://doi.org/10.1007/s00039-008-0662-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1033737933", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-06404-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033737933", 
              "https://doi.org/10.1007/978-3-662-06404-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-06404-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033737933", 
              "https://doi.org/10.1007/978-3-662-06404-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00039-013-0226-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036557608", 
              "https://doi.org/10.1007/s00039-013-0226-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10231-013-0344-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049980196", 
              "https://doi.org/10.1007/s10231-013-0344-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/cocv/2014041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056952027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/memo/0564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059343613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012993244945", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062880969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214440436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459573"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214443604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/jdg/1214445536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084459806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cdc.2014.7040138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093528058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/surv/091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098702172"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "We give a short solution to one of the main open problems in subriemannian geometry. Namely, we prove that length minimizers do not have corner-type singularities. With this result we solve Problem II of Agrachev\u2019s list, and provide the first general result toward the 30-year-old open problem of regularity of subriemannian geodesics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00222-016-0661-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4248544", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136369", 
            "issn": [
              "0020-9910", 
              "1432-1297"
            ], 
            "name": "Inventiones Mathematicae", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "206"
          }
        ], 
        "name": "Non-minimality of corners in subriemannian geometry", 
        "pagination": "693-704", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9c5ecb0ac738c748baabc37b49dfd25838d30dab48697b9df7c6aa046a6dd781"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00222-016-0661-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032824455"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00222-016-0661-9", 
          "https://app.dimensions.ai/details/publication/pub.1032824455"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000482.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00222-016-0661-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00222-016-0661-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00222-016-0661-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00222-016-0661-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00222-016-0661-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    157 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00222-016-0661-9 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N635809a7717f44c9aa932e8d00c9b9b9
    4 schema:citation sg:pub.10.1007/978-0-8176-4583-0
    5 sg:pub.10.1007/978-1-4757-1799-0
    6 sg:pub.10.1007/978-3-0348-9210-0_2
    7 sg:pub.10.1007/978-3-0348-9210-0_4
    8 sg:pub.10.1007/978-3-319-02132-4_1
    9 sg:pub.10.1007/978-3-319-02132-4_18
    10 sg:pub.10.1007/978-3-319-04804-8
    11 sg:pub.10.1007/978-3-319-08690-3
    12 sg:pub.10.1007/978-3-662-06404-7
    13 sg:pub.10.1007/bf01232676
    14 sg:pub.10.1007/bf02255895
    15 sg:pub.10.1007/s00039-008-0662-y
    16 sg:pub.10.1007/s00039-013-0226-7
    17 sg:pub.10.1007/s00526-012-0592-2
    18 sg:pub.10.1007/s10231-013-0344-8
    19 https://app.dimensions.ai/details/publication/pub.1009297461
    20 https://app.dimensions.ai/details/publication/pub.1033737933
    21 https://doi.org/10.1051/cocv/2014041
    22 https://doi.org/10.1090/memo/0564
    23 https://doi.org/10.1090/surv/091
    24 https://doi.org/10.1109/cdc.2014.7040138
    25 https://doi.org/10.1137/s0363012993244945
    26 https://doi.org/10.4310/jdg/1214440436
    27 https://doi.org/10.4310/jdg/1214443604
    28 https://doi.org/10.4310/jdg/1214445536
    29 schema:datePublished 2016-12
    30 schema:datePublishedReg 2016-12-01
    31 schema:description We give a short solution to one of the main open problems in subriemannian geometry. Namely, we prove that length minimizers do not have corner-type singularities. With this result we solve Problem II of Agrachev’s list, and provide the first general result toward the 30-year-old open problem of regularity of subriemannian geodesics.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N168bb434772e4a85a8813bc9095f08ef
    36 Nd001044a70244f3a982c118b0d24d652
    37 sg:journal.1136369
    38 schema:name Non-minimality of corners in subriemannian geometry
    39 schema:pagination 693-704
    40 schema:productId Na2845f08cfbd4eb79dfe0c7df9ffca24
    41 Nd74adbc35cc441c2add893bce7bedc77
    42 Neafe8a2f436c4b19a0c48f3d5fd7e620
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032824455
    44 https://doi.org/10.1007/s00222-016-0661-9
    45 schema:sdDatePublished 2019-04-10T23:17
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Na99c7eacb6d649ae95d67dc0f8076cf4
    48 schema:url http://link.springer.com/10.1007/s00222-016-0661-9
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N168bb434772e4a85a8813bc9095f08ef schema:issueNumber 3
    53 rdf:type schema:PublicationIssue
    54 N635809a7717f44c9aa932e8d00c9b9b9 rdf:first N6f4486b67e6943c184ec1e0bb572faea
    55 rdf:rest Nff22d35515af47b3a92150bc8c66701a
    56 N6f4486b67e6943c184ec1e0bb572faea schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    57 schema:familyName Hakavuori
    58 schema:givenName Eero
    59 rdf:type schema:Person
    60 Na2845f08cfbd4eb79dfe0c7df9ffca24 schema:name doi
    61 schema:value 10.1007/s00222-016-0661-9
    62 rdf:type schema:PropertyValue
    63 Na99c7eacb6d649ae95d67dc0f8076cf4 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 Nd001044a70244f3a982c118b0d24d652 schema:volumeNumber 206
    66 rdf:type schema:PublicationVolume
    67 Nd74adbc35cc441c2add893bce7bedc77 schema:name readcube_id
    68 schema:value 9c5ecb0ac738c748baabc37b49dfd25838d30dab48697b9df7c6aa046a6dd781
    69 rdf:type schema:PropertyValue
    70 Neafe8a2f436c4b19a0c48f3d5fd7e620 schema:name dimensions_id
    71 schema:value pub.1032824455
    72 rdf:type schema:PropertyValue
    73 Nff22d35515af47b3a92150bc8c66701a rdf:first sg:person.01330732167.20
    74 rdf:rest rdf:nil
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:grant.4248544 http://pending.schema.org/fundedItem sg:pub.10.1007/s00222-016-0661-9
    82 rdf:type schema:MonetaryGrant
    83 sg:journal.1136369 schema:issn 0020-9910
    84 1432-1297
    85 schema:name Inventiones Mathematicae
    86 rdf:type schema:Periodical
    87 sg:person.01330732167.20 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    88 schema:familyName Le Donne
    89 schema:givenName Enrico
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330732167.20
    91 rdf:type schema:Person
    92 sg:pub.10.1007/978-0-8176-4583-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009297461
    93 https://doi.org/10.1007/978-0-8176-4583-0
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/978-1-4757-1799-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017267575
    96 https://doi.org/10.1007/978-1-4757-1799-0
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/978-3-0348-9210-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282228
    99 https://doi.org/10.1007/978-3-0348-9210-0_2
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/978-3-0348-9210-0_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029905873
    102 https://doi.org/10.1007/978-3-0348-9210-0_4
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/978-3-319-02132-4_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029555158
    105 https://doi.org/10.1007/978-3-319-02132-4_1
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-319-02132-4_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021545058
    108 https://doi.org/10.1007/978-3-319-02132-4_18
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-319-04804-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027975594
    111 https://doi.org/10.1007/978-3-319-04804-8
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-319-08690-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016488067
    114 https://doi.org/10.1007/978-3-319-08690-3
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/978-3-662-06404-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033737933
    117 https://doi.org/10.1007/978-3-662-06404-7
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf01232676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018984199
    120 https://doi.org/10.1007/bf01232676
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bf02255895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017964146
    123 https://doi.org/10.1007/bf02255895
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00039-008-0662-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031469963
    126 https://doi.org/10.1007/s00039-008-0662-y
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00039-013-0226-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036557608
    129 https://doi.org/10.1007/s00039-013-0226-7
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00526-012-0592-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021794037
    132 https://doi.org/10.1007/s00526-012-0592-2
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s10231-013-0344-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049980196
    135 https://doi.org/10.1007/s10231-013-0344-8
    136 rdf:type schema:CreativeWork
    137 https://app.dimensions.ai/details/publication/pub.1009297461 schema:CreativeWork
    138 https://app.dimensions.ai/details/publication/pub.1033737933 schema:CreativeWork
    139 https://doi.org/10.1051/cocv/2014041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056952027
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1090/memo/0564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343613
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1090/surv/091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098702172
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/cdc.2014.7040138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093528058
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1137/s0363012993244945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880969
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.4310/jdg/1214440436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459573
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.4310/jdg/1214443604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459731
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.4310/jdg/1214445536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459806
    154 rdf:type schema:CreativeWork
    155 https://www.grid.ac/institutes/grid.9681.6 schema:alternateName University of Jyväskylä
    156 schema:name Department of Mathematics and Statistics, University of Jyväskylä, 40014, Jyväskylä, Finland
    157 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...