Ontology type: schema:ScholarlyArticle
2014-02
AUTHORSLuigi Ambrosio, Nicola Gigli, Giuseppe Savaré
ABSTRACTThis paper is devoted to a deeper understanding of the heat flow and to the refinement of calculus tools on metric measure spaces . Our main results are: A general study of the relations between the Hopf–Lax semigroup and Hamilton–Jacobi equation in metric spaces (X,d).The equivalence of the heat flow in generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures .The proof of density in energy of Lipschitz functions in the Sobolev space .A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem, is the fourth achievement of the paper. Our results apply in particular to spaces satisfying Ricci curvature bounds in the sense of Lott and Villani (Ann. Math. 169:903–991, 2009) and Sturm (Acta Math. 196: 65–131, 2006, and Acta Math. 196:133–177, 2006) and require neither the doubling property nor the validity of the local Poincaré inequality. A general study of the relations between the Hopf–Lax semigroup and Hamilton–Jacobi equation in metric spaces (X,d). The equivalence of the heat flow in generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures . The proof of density in energy of Lipschitz functions in the Sobolev space . A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem, is the fourth achievement of the paper. More... »
PAGES289-391
http://scigraph.springernature.com/pub.10.1007/s00222-013-0456-1
DOIhttp://dx.doi.org/10.1007/s00222-013-0456-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005998425
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Interdisciplinary Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Dipto. Matematica, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Ambrosio",
"givenName": "Luigi",
"id": "sg:person.012621721115.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nice Sophia Antipolis University",
"id": "https://www.grid.ac/institutes/grid.10737.32",
"name": [
"Math\u00e9matiques, Universit\u00e9 de Nice, Parc Valrose, 06108, Nice, France"
],
"type": "Organization"
},
"familyName": "Gigli",
"givenName": "Nicola",
"id": "sg:person.015012242515.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015012242515.20"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Mathematics, Via Ferrata 1, 27100, Pavia, Italy"
],
"type": "Organization"
},
"familyName": "Savar\u00e9",
"givenName": "Giuseppe",
"id": "sg:person.015505046621.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505046621.07"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1090/s0273-0979-99-00776-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005603992"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-011-0442-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006224392",
"https://doi.org/10.1007/s00526-011-0442-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfa.2014.02.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006386490"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11511-006-0003-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008600697",
"https://doi.org/10.1007/s11511-006-0003-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-008-0177-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009102645",
"https://doi.org/10.1007/s00440-008-0177-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-008-0177-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009102645",
"https://doi.org/10.1007/s00440-008-0177-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-008-0177-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009102645",
"https://doi.org/10.1007/s00440-008-0177-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-009-0303-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009292399",
"https://doi.org/10.1007/s00526-009-0303-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-009-0303-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009292399",
"https://doi.org/10.1007/s00526-009-0303-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11511-006-0002-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009828547",
"https://doi.org/10.1007/s11511-006-0002-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-34514-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012306418",
"https://doi.org/10.1007/978-3-540-34514-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-34514-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012306418",
"https://doi.org/10.1007/978-3-540-34514-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-006-0032-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012840416",
"https://doi.org/10.1007/s00526-006-0032-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-006-0032-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012840416",
"https://doi.org/10.1007/s00526-006-0032-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-003-0307-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016184078",
"https://doi.org/10.1007/s00440-003-0307-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-003-0307-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016184078",
"https://doi.org/10.1007/s00440-003-0307-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-009-0199-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025416088",
"https://doi.org/10.1007/s00440-009-0199-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-009-0199-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025416088",
"https://doi.org/10.1007/s00440-009-0199-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-009-0199-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025416088",
"https://doi.org/10.1007/s00440-009-0199-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s000390050094",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025720597",
"https://doi.org/10.1007/s000390050094"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0273-0979-07-01140-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035436366"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-32160-3_1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036211003",
"https://doi.org/10.1007/978-3-642-32160-3_1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.20273",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036640295"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cpa.21431",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037093270"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02392747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038599583",
"https://doi.org/10.1007/bf02392747"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfa.2012.05.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041981393"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-71050-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936119",
"https://doi.org/10.1007/978-3-540-71050-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-009-0227-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048908410",
"https://doi.org/10.1007/s00526-009-0227-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-009-0227-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048908410",
"https://doi.org/10.1007/s00526-009-0227-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.matpur.2007.06.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052027135"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfa.2006.10.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053064283"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/memo/1113",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059344070"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036141096303359",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062876406"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/08-aihp306",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064390045"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/00127094-2681605",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064411389"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4007/annals.2009.169.903",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071867138"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/275",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072320563"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/746",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072321078"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/772",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072321107"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/surv/062",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098741760"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-02",
"datePublishedReg": "2014-02-01",
"description": "This paper is devoted to a deeper understanding of the heat flow and to the refinement of calculus tools on metric measure spaces . Our main results are: A general study of the relations between the Hopf\u2013Lax semigroup and Hamilton\u2013Jacobi equation in metric spaces (X,d).The equivalence of the heat flow in generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures .The proof of density in energy of Lipschitz functions in the Sobolev space .A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem, is the fourth achievement of the paper. Our results apply in particular to spaces satisfying Ricci curvature bounds in the sense of Lott and Villani (Ann. Math. 169:903\u2013991, 2009) and Sturm (Acta Math. 196: 65\u2013131, 2006, and Acta Math. 196:133\u2013177, 2006) and require neither the doubling property nor the validity of the local Poincar\u00e9 inequality. A general study of the relations between the Hopf\u2013Lax semigroup and Hamilton\u2013Jacobi equation in metric spaces (X,d). The equivalence of the heat flow in generated by a suitable Dirichlet energy and the Wasserstein gradient flow of the relative entropy functional in the space of probability measures . The proof of density in energy of Lipschitz functions in the Sobolev space . A fine and very general analysis of the differentiability properties of a large class of Kantorovich potentials, in connection with the optimal transport problem, is the fourth achievement of the paper.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00222-013-0456-1",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136369",
"issn": [
"0020-9910",
"1432-1297"
],
"name": "Inventiones Mathematicae",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "195"
}
],
"name": "Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below",
"pagination": "289-391",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1c92b8a82e2329730140c95e2158fd27a35533bee289577da96c4a5dc86cbed2"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00222-013-0456-1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005998425"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00222-013-0456-1",
"https://app.dimensions.ai/details/publication/pub.1005998425"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T21:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000480.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/s00222-013-0456-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00222-013-0456-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00222-013-0456-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00222-013-0456-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00222-013-0456-1'
This table displays all metadata directly associated to this object as RDF triples.
187 TRIPLES
21 PREDICATES
58 URIs
19 LITERALS
7 BLANK NODES