Canonical bases and affine Hecke algebras of type B View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-02-19

AUTHORS

M. Varagnolo, E. Vasserot

ABSTRACT

We prove a series of conjectures of Enomoto and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type B. The main ingredient of the proof is a new graded Ext-algebra associated with quiver with involutions that we compute explicitly.

PAGES

593-693

References to SciGraph publications

  • 2008-09-10. Torsion and Abelianization in Equivariant Cohomology in TRANSFORMATION GROUPS
  • 1994. Equivariant Sheaves and Functors in NONE
  • 2008-05-24. On Representations of Affine Hecke Algebras of Type B in ALGEBRAS AND REPRESENTATION THEORY
  • 1992-12. Affine quivers and canonical bases in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 2004. Methods of Graded Rings in NONE
  • 1997-12. Equivariant cohomology, Koszul duality, and the localization theorem in INVENTIONES MATHEMATICAE
  • 1991. A First Course in Noncommutative Rings in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y

    DOI

    http://dx.doi.org/10.1007/s00222-011-0314-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040631342


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Universit\u00e9 de Cergy-Pontoise, UMR CNRS 8088, 95000, Cergy-Pontoise, France", 
              "id": "http://www.grid.ac/institutes/grid.507676.5", 
              "name": [
                "Universit\u00e9 de Cergy-Pontoise, UMR CNRS 8088, 95000, Cergy-Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varagnolo", 
            "givenName": "M.", 
            "id": "sg:person.015556050720.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556050720.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris 7, 175 rue du Chevaleret, 75013, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.508487.6", 
              "name": [
                "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris 7, 175 rue du Chevaleret, 75013, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasserot", 
            "givenName": "E.", 
            "id": "sg:person.013413471701.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413471701.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4684-0406-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011993377", 
              "https://doi.org/10.1007/978-1-4684-0406-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002220050197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009588980", 
              "https://doi.org/10.1007/s002220050197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02699432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005545204", 
              "https://doi.org/10.1007/bf02699432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0073549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049816955", 
              "https://doi.org/10.1007/bfb0073549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b94904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004279569", 
              "https://doi.org/10.1007/b94904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00031-008-9023-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031985540", 
              "https://doi.org/10.1007/s00031-008-9023-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10468-008-9086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032045458", 
              "https://doi.org/10.1007/s10468-008-9086-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-02-19", 
        "datePublishedReg": "2011-02-19", 
        "description": "We prove a series of conjectures of Enomoto and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type B. The main ingredient of the proof is a new graded Ext-algebra associated with quiver with involutions that we compute explicitly.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00222-011-0314-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136369", 
            "issn": [
              "0020-9910", 
              "1432-1297"
            ], 
            "name": "Inventiones Mathematicae", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "185"
          }
        ], 
        "keywords": [
          "affine Hecke algebra", 
          "Hecke algebra", 
          "canonical basis", 
          "Ext-algebra", 
          "series of conjectures", 
          "algebra", 
          "main ingredients", 
          "Kashiwara", 
          "quivers", 
          "conjecture", 
          "proof", 
          "Enomoto", 
          "involution", 
          "rules", 
          "basis", 
          "series", 
          "ingredients", 
          "type B.", 
          "type B", 
          "B."
        ], 
        "name": "Canonical bases and affine Hecke algebras of type B", 
        "pagination": "593-693", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040631342"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00222-011-0314-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00222-011-0314-y", 
          "https://app.dimensions.ai/details/publication/pub.1040631342"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_554.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00222-011-0314-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      22 PREDICATES      52 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00222-011-0314-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne387f4dfa9c64886b5bd0549ed800ac8
    4 schema:citation sg:pub.10.1007/978-1-4684-0406-7
    5 sg:pub.10.1007/b94904
    6 sg:pub.10.1007/bf02699432
    7 sg:pub.10.1007/bfb0073549
    8 sg:pub.10.1007/s00031-008-9023-z
    9 sg:pub.10.1007/s002220050197
    10 sg:pub.10.1007/s10468-008-9086-5
    11 schema:datePublished 2011-02-19
    12 schema:datePublishedReg 2011-02-19
    13 schema:description We prove a series of conjectures of Enomoto and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type B. The main ingredient of the proof is a new graded Ext-algebra associated with quiver with involutions that we compute explicitly.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf N842527cff1944bb18e3cc34f95134850
    18 Nd67cdb2af58b48a8ae584793f62084bc
    19 sg:journal.1136369
    20 schema:keywords B.
    21 Enomoto
    22 Ext-algebra
    23 Hecke algebra
    24 Kashiwara
    25 affine Hecke algebra
    26 algebra
    27 basis
    28 canonical basis
    29 conjecture
    30 ingredients
    31 involution
    32 main ingredients
    33 proof
    34 quivers
    35 rules
    36 series
    37 series of conjectures
    38 type B
    39 type B.
    40 schema:name Canonical bases and affine Hecke algebras of type B
    41 schema:pagination 593-693
    42 schema:productId N6c758094f7584103af0d1cba8e1fe6bc
    43 Nc1a863d820c64a47ba60c9ced58317b6
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040631342
    45 https://doi.org/10.1007/s00222-011-0314-y
    46 schema:sdDatePublished 2021-12-01T19:25
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N5c3a3356ca5045e8b25460ee4b4e7948
    49 schema:url https://doi.org/10.1007/s00222-011-0314-y
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N5c3a3356ca5045e8b25460ee4b4e7948 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N6c758094f7584103af0d1cba8e1fe6bc schema:name doi
    56 schema:value 10.1007/s00222-011-0314-y
    57 rdf:type schema:PropertyValue
    58 N842527cff1944bb18e3cc34f95134850 schema:volumeNumber 185
    59 rdf:type schema:PublicationVolume
    60 Nc1a863d820c64a47ba60c9ced58317b6 schema:name dimensions_id
    61 schema:value pub.1040631342
    62 rdf:type schema:PropertyValue
    63 Nd67cdb2af58b48a8ae584793f62084bc schema:issueNumber 3
    64 rdf:type schema:PublicationIssue
    65 Ne387f4dfa9c64886b5bd0549ed800ac8 rdf:first sg:person.015556050720.21
    66 rdf:rest Nf7db83fd26b54908aa73b4dc70faa010
    67 Nf7db83fd26b54908aa73b4dc70faa010 rdf:first sg:person.013413471701.62
    68 rdf:rest rdf:nil
    69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Mathematical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Pure Mathematics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1136369 schema:issn 0020-9910
    76 1432-1297
    77 schema:name Inventiones Mathematicae
    78 schema:publisher Springer Nature
    79 rdf:type schema:Periodical
    80 sg:person.013413471701.62 schema:affiliation grid-institutes:grid.508487.6
    81 schema:familyName Vasserot
    82 schema:givenName E.
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413471701.62
    84 rdf:type schema:Person
    85 sg:person.015556050720.21 schema:affiliation grid-institutes:grid.507676.5
    86 schema:familyName Varagnolo
    87 schema:givenName M.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556050720.21
    89 rdf:type schema:Person
    90 sg:pub.10.1007/978-1-4684-0406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011993377
    91 https://doi.org/10.1007/978-1-4684-0406-7
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/b94904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004279569
    94 https://doi.org/10.1007/b94904
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf02699432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005545204
    97 https://doi.org/10.1007/bf02699432
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bfb0073549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049816955
    100 https://doi.org/10.1007/bfb0073549
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s00031-008-9023-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031985540
    103 https://doi.org/10.1007/s00031-008-9023-z
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/s002220050197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009588980
    106 https://doi.org/10.1007/s002220050197
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s10468-008-9086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032045458
    109 https://doi.org/10.1007/s10468-008-9086-5
    110 rdf:type schema:CreativeWork
    111 grid-institutes:grid.507676.5 schema:alternateName Université de Cergy-Pontoise, UMR CNRS 8088, 95000, Cergy-Pontoise, France
    112 schema:name Université de Cergy-Pontoise, UMR CNRS 8088, 95000, Cergy-Pontoise, France
    113 rdf:type schema:Organization
    114 grid-institutes:grid.508487.6 schema:alternateName Département de Mathématiques, Université Paris 7, 175 rue du Chevaleret, 75013, Paris, France
    115 schema:name Département de Mathématiques, Université Paris 7, 175 rue du Chevaleret, 75013, Paris, France
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...