Canonical bases and affine Hecke algebras of type B View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09

AUTHORS

M. Varagnolo, E. Vasserot

ABSTRACT

We prove a series of conjectures of Enomoto and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type B. The main ingredient of the proof is a new graded Ext-algebra associated with quiver with involutions that we compute explicitly.

PAGES

593-693

References to SciGraph publications

  • 2008-12. Torsion and Abelianization in Equivariant Cohomology in TRANSFORMATION GROUPS
  • 1994. Equivariant Sheaves and Functors in NONE
  • 2008-08. On Representations of Affine Hecke Algebras of Type B in ALGEBRAS AND REPRESENTATION THEORY
  • 1992-12. Affine quivers and canonical bases in PUBLICATIONS MATHÉMATIQUES DE L'IHÉS
  • 2004. Methods of Graded Rings in NONE
  • 1997-12. Equivariant cohomology, Koszul duality, and the localization theorem in INVENTIONES MATHEMATICAE
  • 1991. A First Course in Noncommutative Rings in NONE
  • Journal

    TITLE

    Inventiones Mathematicae

    ISSUE

    3

    VOLUME

    185

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y

    DOI

    http://dx.doi.org/10.1007/s00222-011-0314-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040631342


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Cergy-Pontoise University", 
              "id": "https://www.grid.ac/institutes/grid.7901.f", 
              "name": [
                "Universit\u00e9 de Cergy-Pontoise, UMR CNRS 8088, 95000, Cergy-Pontoise, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Varagnolo", 
            "givenName": "M.", 
            "id": "sg:person.015556050720.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556050720.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Paris Diderot University", 
              "id": "https://www.grid.ac/institutes/grid.7452.4", 
              "name": [
                "D\u00e9partement de Math\u00e9matiques, Universit\u00e9 Paris 7, 175 rue du Chevaleret, 75013, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasserot", 
            "givenName": "E.", 
            "id": "sg:person.013413471701.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413471701.62"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1004279569", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b94904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004279569", 
              "https://doi.org/10.1007/b94904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b94904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004279569", 
              "https://doi.org/10.1007/b94904"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02699432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005545204", 
              "https://doi.org/10.1007/bf02699432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002220050197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009588980", 
              "https://doi.org/10.1007/s002220050197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0406-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011993377", 
              "https://doi.org/10.1007/978-1-4684-0406-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0406-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011993377", 
              "https://doi.org/10.1007/978-1-4684-0406-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crelle.2011.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029283732"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00031-008-9023-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031985540", 
              "https://doi.org/10.1007/s00031-008-9023-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00031-008-9023-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031985540", 
              "https://doi.org/10.1007/s00031-008-9023-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10468-008-9086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032045458", 
              "https://doi.org/10.1007/s10468-008-9086-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10468-008-9086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032045458", 
              "https://doi.org/10.1007/s10468-008-9086-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1995.1031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035519919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2011.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036971826"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s1088-4165-09-00346-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047837251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2009.06.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048401194"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1049816955", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0073549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049816955", 
              "https://doi.org/10.1007/bfb0073549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0073549", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049816955", 
              "https://doi.org/10.1007/bfb0073549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/imrn/rnp014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059690397"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/00127094-2009-028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064411175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2977/prims/1216238305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070935842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3792/pjaa.83.135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071432705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/kjm/1250518452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083508901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511542800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098668623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511542824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098698445"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-09", 
        "datePublishedReg": "2011-09-01", 
        "description": "We prove a series of conjectures of Enomoto and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type B. The main ingredient of the proof is a new graded Ext-algebra associated with quiver with involutions that we compute explicitly.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00222-011-0314-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136369", 
            "issn": [
              "0020-9910", 
              "1432-1297"
            ], 
            "name": "Inventiones Mathematicae", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "185"
          }
        ], 
        "name": "Canonical bases and affine Hecke algebras of type B", 
        "pagination": "593-693", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c18d60699931bf802cf332ea74dd0eb17cee2321ed0afd4b12aac5999090d7d1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00222-011-0314-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040631342"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00222-011-0314-y", 
          "https://app.dimensions.ai/details/publication/pub.1040631342"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000482.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00222-011-0314-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00222-011-0314-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      20 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00222-011-0314-y schema:author Nefe19df7e3b440e0aa30b86eb4fecd93
    2 schema:citation sg:pub.10.1007/978-1-4684-0406-7
    3 sg:pub.10.1007/b94904
    4 sg:pub.10.1007/bf02699432
    5 sg:pub.10.1007/bfb0073549
    6 sg:pub.10.1007/s00031-008-9023-z
    7 sg:pub.10.1007/s002220050197
    8 sg:pub.10.1007/s10468-008-9086-5
    9 https://app.dimensions.ai/details/publication/pub.1004279569
    10 https://app.dimensions.ai/details/publication/pub.1049816955
    11 https://doi.org/10.1006/aima.1995.1031
    12 https://doi.org/10.1016/j.aim.2009.06.018
    13 https://doi.org/10.1016/j.aim.2011.01.024
    14 https://doi.org/10.1017/cbo9780511542800
    15 https://doi.org/10.1017/cbo9780511542824
    16 https://doi.org/10.1090/s1088-4165-09-00346-x
    17 https://doi.org/10.1093/imrn/rnp014
    18 https://doi.org/10.1215/00127094-2009-028
    19 https://doi.org/10.1215/kjm/1250518452
    20 https://doi.org/10.1515/crelle.2011.068
    21 https://doi.org/10.2977/prims/1216238305
    22 https://doi.org/10.3792/pjaa.83.135
    23 schema:datePublished 2011-09
    24 schema:datePublishedReg 2011-09-01
    25 schema:description We prove a series of conjectures of Enomoto and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type B. The main ingredient of the proof is a new graded Ext-algebra associated with quiver with involutions that we compute explicitly.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N62a22aad418a44c18d06581e7ee61b3c
    30 N715cf9bec3734ce2b680b3d30cb1b714
    31 sg:journal.1136369
    32 schema:name Canonical bases and affine Hecke algebras of type B
    33 schema:pagination 593-693
    34 schema:productId N1cd87ba75b9448fe8f91b9b65d48d7d6
    35 N2bf85f64b2d04aa9927159b7afbec73d
    36 Nfdbbc52fb37c4190a511764f6473227e
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040631342
    38 https://doi.org/10.1007/s00222-011-0314-y
    39 schema:sdDatePublished 2019-04-11T01:52
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher Ndba2d1eb180a40b59c82731be0b8cc37
    42 schema:url http://link.springer.com/10.1007/s00222-011-0314-y
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N1cd87ba75b9448fe8f91b9b65d48d7d6 schema:name dimensions_id
    47 schema:value pub.1040631342
    48 rdf:type schema:PropertyValue
    49 N2bf85f64b2d04aa9927159b7afbec73d schema:name doi
    50 schema:value 10.1007/s00222-011-0314-y
    51 rdf:type schema:PropertyValue
    52 N62a22aad418a44c18d06581e7ee61b3c schema:issueNumber 3
    53 rdf:type schema:PublicationIssue
    54 N715cf9bec3734ce2b680b3d30cb1b714 schema:volumeNumber 185
    55 rdf:type schema:PublicationVolume
    56 Ndba2d1eb180a40b59c82731be0b8cc37 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nefe19df7e3b440e0aa30b86eb4fecd93 rdf:first sg:person.015556050720.21
    59 rdf:rest Nf3747b2060a144b08c9af5bf7c3884d7
    60 Nf3747b2060a144b08c9af5bf7c3884d7 rdf:first sg:person.013413471701.62
    61 rdf:rest rdf:nil
    62 Nfdbbc52fb37c4190a511764f6473227e schema:name readcube_id
    63 schema:value c18d60699931bf802cf332ea74dd0eb17cee2321ed0afd4b12aac5999090d7d1
    64 rdf:type schema:PropertyValue
    65 sg:journal.1136369 schema:issn 0020-9910
    66 1432-1297
    67 schema:name Inventiones Mathematicae
    68 rdf:type schema:Periodical
    69 sg:person.013413471701.62 schema:affiliation https://www.grid.ac/institutes/grid.7452.4
    70 schema:familyName Vasserot
    71 schema:givenName E.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013413471701.62
    73 rdf:type schema:Person
    74 sg:person.015556050720.21 schema:affiliation https://www.grid.ac/institutes/grid.7901.f
    75 schema:familyName Varagnolo
    76 schema:givenName M.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015556050720.21
    78 rdf:type schema:Person
    79 sg:pub.10.1007/978-1-4684-0406-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011993377
    80 https://doi.org/10.1007/978-1-4684-0406-7
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/b94904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004279569
    83 https://doi.org/10.1007/b94904
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf02699432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005545204
    86 https://doi.org/10.1007/bf02699432
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bfb0073549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049816955
    89 https://doi.org/10.1007/bfb0073549
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s00031-008-9023-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031985540
    92 https://doi.org/10.1007/s00031-008-9023-z
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s002220050197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009588980
    95 https://doi.org/10.1007/s002220050197
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/s10468-008-9086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032045458
    98 https://doi.org/10.1007/s10468-008-9086-5
    99 rdf:type schema:CreativeWork
    100 https://app.dimensions.ai/details/publication/pub.1004279569 schema:CreativeWork
    101 https://app.dimensions.ai/details/publication/pub.1049816955 schema:CreativeWork
    102 https://doi.org/10.1006/aima.1995.1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035519919
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.aim.2009.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048401194
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.aim.2011.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036971826
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1017/cbo9780511542800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668623
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1017/cbo9780511542824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698445
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1090/s1088-4165-09-00346-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047837251
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1093/imrn/rnp014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059690397
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1215/00127094-2009-028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064411175
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1215/kjm/1250518452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083508901
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1515/crelle.2011.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029283732
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.2977/prims/1216238305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935842
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.3792/pjaa.83.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071432705
    125 rdf:type schema:CreativeWork
    126 https://www.grid.ac/institutes/grid.7452.4 schema:alternateName Paris Diderot University
    127 schema:name Département de Mathématiques, Université Paris 7, 175 rue du Chevaleret, 75013, Paris, France
    128 rdf:type schema:Organization
    129 https://www.grid.ac/institutes/grid.7901.f schema:alternateName Cergy-Pontoise University
    130 schema:name Université de Cergy-Pontoise, UMR CNRS 8088, 95000, Cergy-Pontoise, France
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...