The effect of rate of torque development on motor unit recruitment and firing rates during isometric voluntary trapezoidal contractions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-08-08

AUTHORS

Jonathan D. Miller, C. J. Lund, Marissa D. Gingrich, Kyle L. Schtul, Mandy E. Wray, Trent J. Herda

ABSTRACT

It is common practice to examine motor unit (MU) activity according to mean firing rate (MFR) and action potential amplitude (MUAPAMP) vs. recruitment threshold (RT) relationships during isometric trapezoidal contractions. However, it is unknown whether the rate of torque development during the linearly increasing torque phase affects the activity of MUs during such contractions. Sixteen healthy males and females performed two isometric trapezoidal muscle actions at 40% of maximum voluntary contraction (MVC), one at a rate of torque development of 5% MVC/s (SLOW40) and one at 20% MVC/s (FAST40) during the linearly increasing torque phase. Surface electromyography (EMG) was recorded from the vastus lateralis (VL) via a 5-pin surface array sensor and decomposed into action potential trains of individual MUs, yielding MFRs and MUAPAMP which were regressed against RT separately for each contraction. Surface EMG amplitude recorded from leg extensors and flexors was used to quantify muscle activation and coactivation. MFR vs. RT relationship slopes were more negative (P = 0.003) for the SLOW40 (− 0.491 ± 0.101 pps/%MVC) than FAST40 (− 0.322 ± 0.109 pps/%MVC) and the slopes of the MUAPAMP vs. RT relationships (P = 0.022, SLOW40 = 0.0057 ± 0.0021 mV/%MVC, FAST40 = 0.0041 ± 0.0023 mV/%MVC) and muscle activation of the extensors (P < 0.001, SLOW40 = 36.3 ± 7.82%, FAST40 = 34.0 ± 6.26%) were greater for SLOW40 than FAST40. MU firing rates were lower and action potential amplitudes were larger in relation to recruitment thresholds for a contraction performed at a slower rate compared to a faster rate of isometric torque development. Differences in MU activity can exist as a function of rate of torque development during commonly performed isometric trapezoidal contractions. More... »

PAGES

2653-2664

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00221-019-05612-0

DOI

http://dx.doi.org/10.1007/s00221-019-05612-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1120209595

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31396644


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1116", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Physiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Action Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isometric Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motor Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle, Skeletal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quadriceps Muscle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recruitment, Neurophysiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Torque", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Jonathan D.", 
        "id": "sg:person.0621623763.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621623763.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lund", 
        "givenName": "C. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gingrich", 
        "givenName": "Marissa D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schtul", 
        "givenName": "Kyle L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wray", 
        "givenName": "Mandy E.", 
        "id": "sg:person.0604431061.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604431061.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA", 
          "id": "http://www.grid.ac/institutes/grid.266515.3", 
          "name": [
            "Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herda", 
        "givenName": "Trent J.", 
        "id": "sg:person.0727230544.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727230544.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00421-019-04090-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112158392", 
          "https://doi.org/10.1007/s00421-019-04090-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00696370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009824462", 
          "https://doi.org/10.1007/bf00696370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-005-0027-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023480187", 
          "https://doi.org/10.1007/s00424-005-0027-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00421-016-3346-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040621943", 
          "https://doi.org/10.1007/s00421-016-3346-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00233842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023705849", 
          "https://doi.org/10.1007/bf00233842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002210000623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033430309", 
          "https://doi.org/10.1007/s002210000623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00231776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039891875", 
          "https://doi.org/10.1007/bf00231776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-10-99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016278007", 
          "https://doi.org/10.1186/1743-0003-10-99"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-08-08", 
    "datePublishedReg": "2019-08-08", 
    "description": "It is common practice to examine motor unit (MU) activity according to mean firing rate (MFR) and action potential amplitude (MUAPAMP) vs. recruitment threshold (RT) relationships during isometric trapezoidal contractions. However, it is unknown whether the rate of torque development during the linearly increasing torque phase affects the activity of MUs during such contractions. Sixteen healthy males and females performed two isometric trapezoidal muscle actions at 40% of maximum voluntary contraction (MVC), one at a rate of torque development of 5% MVC/s (SLOW40) and one at 20% MVC/s (FAST40) during the linearly increasing torque phase. Surface electromyography (EMG) was recorded from the vastus lateralis (VL) via a 5-pin surface array sensor and decomposed into action potential trains of individual MUs, yielding MFRs and MUAPAMP which were regressed against RT separately for each contraction. Surface EMG amplitude recorded from leg extensors and flexors was used to quantify muscle activation and coactivation. MFR vs. RT relationship slopes were more negative (P\u2009=\u20090.003) for the SLOW40 (\u2212\u20090.491\u2009\u00b1\u20090.101 pps/%MVC) than FAST40 (\u2212\u20090.322\u2009\u00b1\u20090.109 pps/%MVC) and the slopes of the MUAPAMP vs. RT relationships (P\u2009=\u20090.022, SLOW40\u2009=\u20090.0057\u2009\u00b1\u20090.0021\u00a0mV/%MVC, FAST40\u2009=\u20090.0041\u2009\u00b1\u20090.0023\u00a0mV/%MVC) and muscle activation of the extensors (P\u2009<\u20090.001, SLOW40\u2009=\u200936.3\u2009\u00b1\u20097.82%, FAST40\u2009=\u200934.0\u2009\u00b1\u20096.26%) were greater for SLOW40 than FAST40. MU firing rates were lower and action potential amplitudes were larger in relation to recruitment thresholds for a contraction performed at a slower rate compared to a faster rate of isometric torque development. Differences in MU activity can exist as a function of rate of torque development during commonly performed isometric trapezoidal contractions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00221-019-05612-0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1005581", 
        "issn": [
          "0014-4819", 
          "1432-1106"
        ], 
        "name": "Experimental Brain Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "237"
      }
    ], 
    "keywords": [
      "MVC/s", 
      "action potential amplitude", 
      "maximum voluntary contraction", 
      "torque development", 
      "firing rate", 
      "vastus lateralis", 
      "potential amplitude", 
      "isometric trapezoidal muscle actions", 
      "muscle activation", 
      "recruitment threshold relationship", 
      "MU firing rates", 
      "motor unit activity", 
      "surface EMG amplitude", 
      "motor unit recruitment", 
      "activity of mu", 
      "isometric torque development", 
      "voluntary contraction", 
      "healthy males", 
      "action potential trains", 
      "EMG amplitude", 
      "leg extensors", 
      "recruitment threshold", 
      "unit recruitment", 
      "unit activity", 
      "muscle actions", 
      "surface electromyography", 
      "individual MUs", 
      "mu activity", 
      "contraction", 
      "extensors", 
      "RT relationships", 
      "relationship slope", 
      "electromyography", 
      "such contractions", 
      "activation", 
      "flexors", 
      "activity", 
      "rate", 
      "lateralis", 
      "coactivation", 
      "mu", 
      "males", 
      "slower rate", 
      "females", 
      "threshold relationship", 
      "mFRS", 
      "development", 
      "recruitment", 
      "RT", 
      "faster rate", 
      "differences", 
      "common practice", 
      "relationship", 
      "action", 
      "effect of rate", 
      "amplitude", 
      "effect", 
      "MFR", 
      "practice", 
      "threshold", 
      "function", 
      "function of rate", 
      "phase", 
      "relation", 
      "train", 
      "slope", 
      "sensors", 
      "torque phase", 
      "array sensor"
    ], 
    "name": "The effect of rate of torque development on motor unit recruitment and firing rates during isometric voluntary trapezoidal contractions", 
    "pagination": "2653-2664", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1120209595"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00221-019-05612-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31396644"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00221-019-05612-0", 
      "https://app.dimensions.ai/details/publication/pub.1120209595"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_803.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00221-019-05612-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00221-019-05612-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00221-019-05612-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00221-019-05612-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00221-019-05612-0'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      114 URIs      98 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00221-019-05612-0 schema:about N09901c37970e4e5786f5e608a145aac3
2 N24364788b5b14938a860e260b7c5e79a
3 N3f62d7f3e9c8483fb6fdf774100642f2
4 N41e80355541b450f97f0898bf8ce7dd0
5 N5156a19f9919464790a04694dace7347
6 N630d8c870692487ab44409777bb06dec
7 N64d43d28fe334fa285960aa1aeb537e1
8 N6e0d669b894a40238c1f4831886f3885
9 Nb083c2fd642b4fa0a054dea5908f5869
10 Nb3385132521c41648b3eda97dd9927ff
11 Nb34ff918e5924f719e0a54076cd5cf7d
12 Ndfb17ced3c2f482f9531cdf1c42b77b3
13 anzsrc-for:11
14 anzsrc-for:1116
15 schema:author Ne42662cf2b6446fe8400bfc35b0b3a5c
16 schema:citation sg:pub.10.1007/bf00231776
17 sg:pub.10.1007/bf00233842
18 sg:pub.10.1007/bf00696370
19 sg:pub.10.1007/s002210000623
20 sg:pub.10.1007/s00421-016-3346-6
21 sg:pub.10.1007/s00421-019-04090-0
22 sg:pub.10.1007/s00424-005-0027-4
23 sg:pub.10.1186/1743-0003-10-99
24 schema:datePublished 2019-08-08
25 schema:datePublishedReg 2019-08-08
26 schema:description It is common practice to examine motor unit (MU) activity according to mean firing rate (MFR) and action potential amplitude (MUAPAMP) vs. recruitment threshold (RT) relationships during isometric trapezoidal contractions. However, it is unknown whether the rate of torque development during the linearly increasing torque phase affects the activity of MUs during such contractions. Sixteen healthy males and females performed two isometric trapezoidal muscle actions at 40% of maximum voluntary contraction (MVC), one at a rate of torque development of 5% MVC/s (SLOW40) and one at 20% MVC/s (FAST40) during the linearly increasing torque phase. Surface electromyography (EMG) was recorded from the vastus lateralis (VL) via a 5-pin surface array sensor and decomposed into action potential trains of individual MUs, yielding MFRs and MUAPAMP which were regressed against RT separately for each contraction. Surface EMG amplitude recorded from leg extensors and flexors was used to quantify muscle activation and coactivation. MFR vs. RT relationship slopes were more negative (P = 0.003) for the SLOW40 (− 0.491 ± 0.101 pps/%MVC) than FAST40 (− 0.322 ± 0.109 pps/%MVC) and the slopes of the MUAPAMP vs. RT relationships (P = 0.022, SLOW40 = 0.0057 ± 0.0021 mV/%MVC, FAST40 = 0.0041 ± 0.0023 mV/%MVC) and muscle activation of the extensors (P < 0.001, SLOW40 = 36.3 ± 7.82%, FAST40 = 34.0 ± 6.26%) were greater for SLOW40 than FAST40. MU firing rates were lower and action potential amplitudes were larger in relation to recruitment thresholds for a contraction performed at a slower rate compared to a faster rate of isometric torque development. Differences in MU activity can exist as a function of rate of torque development during commonly performed isometric trapezoidal contractions.
27 schema:genre article
28 schema:isAccessibleForFree false
29 schema:isPartOf N3469c16448d04b928185328c4b4a3ed6
30 N408b4a838c8d47b5ae3dd5d84a6d8035
31 sg:journal.1005581
32 schema:keywords EMG amplitude
33 MFR
34 MU firing rates
35 MVC/s
36 RT
37 RT relationships
38 action
39 action potential amplitude
40 action potential trains
41 activation
42 activity
43 activity of mu
44 amplitude
45 array sensor
46 coactivation
47 common practice
48 contraction
49 development
50 differences
51 effect
52 effect of rate
53 electromyography
54 extensors
55 faster rate
56 females
57 firing rate
58 flexors
59 function
60 function of rate
61 healthy males
62 individual MUs
63 isometric torque development
64 isometric trapezoidal muscle actions
65 lateralis
66 leg extensors
67 mFRS
68 males
69 maximum voluntary contraction
70 motor unit activity
71 motor unit recruitment
72 mu
73 mu activity
74 muscle actions
75 muscle activation
76 phase
77 potential amplitude
78 practice
79 rate
80 recruitment
81 recruitment threshold
82 recruitment threshold relationship
83 relation
84 relationship
85 relationship slope
86 sensors
87 slope
88 slower rate
89 such contractions
90 surface EMG amplitude
91 surface electromyography
92 threshold
93 threshold relationship
94 torque development
95 torque phase
96 train
97 unit activity
98 unit recruitment
99 vastus lateralis
100 voluntary contraction
101 schema:name The effect of rate of torque development on motor unit recruitment and firing rates during isometric voluntary trapezoidal contractions
102 schema:pagination 2653-2664
103 schema:productId N2d55528b77ff4e76ab38bc84b0407e0f
104 Nb58b87e851904159b13a1286fd7f7db2
105 Nbce690e1d0b4496c876e5de6e68aa704
106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120209595
107 https://doi.org/10.1007/s00221-019-05612-0
108 schema:sdDatePublished 2022-12-01T06:38
109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
110 schema:sdPublisher N556054af3ee04edc843eedaa9bf84e83
111 schema:url https://doi.org/10.1007/s00221-019-05612-0
112 sgo:license sg:explorer/license/
113 sgo:sdDataset articles
114 rdf:type schema:ScholarlyArticle
115 N0924a3fe8df849c799a442f44d13db66 rdf:first Nf9a13775abb940e48540d5f41b742fb5
116 rdf:rest N3249ccbaaf9646229ec5935222188ac7
117 N09901c37970e4e5786f5e608a145aac3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Male
119 rdf:type schema:DefinedTerm
120 N23b736f8ab81406eb622dee63cd282c5 rdf:first sg:person.0727230544.89
121 rdf:rest rdf:nil
122 N24364788b5b14938a860e260b7c5e79a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Young Adult
124 rdf:type schema:DefinedTerm
125 N2d55528b77ff4e76ab38bc84b0407e0f schema:name doi
126 schema:value 10.1007/s00221-019-05612-0
127 rdf:type schema:PropertyValue
128 N3249ccbaaf9646229ec5935222188ac7 rdf:first sg:person.0604431061.28
129 rdf:rest N23b736f8ab81406eb622dee63cd282c5
130 N33a37bb2edca48cdba061b29ce4fe2f6 rdf:first N68ee107989ac4d18b6b8344bb7b69837
131 rdf:rest N0924a3fe8df849c799a442f44d13db66
132 N3469c16448d04b928185328c4b4a3ed6 schema:issueNumber 10
133 rdf:type schema:PublicationIssue
134 N3f62d7f3e9c8483fb6fdf774100642f2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Isometric Contraction
136 rdf:type schema:DefinedTerm
137 N408b4a838c8d47b5ae3dd5d84a6d8035 schema:volumeNumber 237
138 rdf:type schema:PublicationVolume
139 N41e80355541b450f97f0898bf8ce7dd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Recruitment, Neurophysiological
141 rdf:type schema:DefinedTerm
142 N5156a19f9919464790a04694dace7347 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Action Potentials
144 rdf:type schema:DefinedTerm
145 N556054af3ee04edc843eedaa9bf84e83 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 N630d8c870692487ab44409777bb06dec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Quadriceps Muscle
149 rdf:type schema:DefinedTerm
150 N64d43d28fe334fa285960aa1aeb537e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Female
152 rdf:type schema:DefinedTerm
153 N68ee107989ac4d18b6b8344bb7b69837 schema:affiliation grid-institutes:grid.266515.3
154 schema:familyName Gingrich
155 schema:givenName Marissa D.
156 rdf:type schema:Person
157 N6e0d669b894a40238c1f4831886f3885 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Motor Neurons
159 rdf:type schema:DefinedTerm
160 Nb083c2fd642b4fa0a054dea5908f5869 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Adult
162 rdf:type schema:DefinedTerm
163 Nb3385132521c41648b3eda97dd9927ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Muscle, Skeletal
165 rdf:type schema:DefinedTerm
166 Nb34ff918e5924f719e0a54076cd5cf7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Humans
168 rdf:type schema:DefinedTerm
169 Nb58b87e851904159b13a1286fd7f7db2 schema:name dimensions_id
170 schema:value pub.1120209595
171 rdf:type schema:PropertyValue
172 Nbce690e1d0b4496c876e5de6e68aa704 schema:name pubmed_id
173 schema:value 31396644
174 rdf:type schema:PropertyValue
175 Nc257a932a3464cf69356244fb01cb565 schema:affiliation grid-institutes:grid.266515.3
176 schema:familyName Lund
177 schema:givenName C. J.
178 rdf:type schema:Person
179 Ndfb17ced3c2f482f9531cdf1c42b77b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Torque
181 rdf:type schema:DefinedTerm
182 Ne42662cf2b6446fe8400bfc35b0b3a5c rdf:first sg:person.0621623763.41
183 rdf:rest Nf8502428764d4de1b87a228c98b7f438
184 Nf8502428764d4de1b87a228c98b7f438 rdf:first Nc257a932a3464cf69356244fb01cb565
185 rdf:rest N33a37bb2edca48cdba061b29ce4fe2f6
186 Nf9a13775abb940e48540d5f41b742fb5 schema:affiliation grid-institutes:grid.266515.3
187 schema:familyName Schtul
188 schema:givenName Kyle L.
189 rdf:type schema:Person
190 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
191 schema:name Medical and Health Sciences
192 rdf:type schema:DefinedTerm
193 anzsrc-for:1116 schema:inDefinedTermSet anzsrc-for:
194 schema:name Medical Physiology
195 rdf:type schema:DefinedTerm
196 sg:journal.1005581 schema:issn 0014-4819
197 1432-1106
198 schema:name Experimental Brain Research
199 schema:publisher Springer Nature
200 rdf:type schema:Periodical
201 sg:person.0604431061.28 schema:affiliation grid-institutes:grid.266515.3
202 schema:familyName Wray
203 schema:givenName Mandy E.
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604431061.28
205 rdf:type schema:Person
206 sg:person.0621623763.41 schema:affiliation grid-institutes:grid.266515.3
207 schema:familyName Miller
208 schema:givenName Jonathan D.
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621623763.41
210 rdf:type schema:Person
211 sg:person.0727230544.89 schema:affiliation grid-institutes:grid.266515.3
212 schema:familyName Herda
213 schema:givenName Trent J.
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727230544.89
215 rdf:type schema:Person
216 sg:pub.10.1007/bf00231776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039891875
217 https://doi.org/10.1007/bf00231776
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/bf00233842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023705849
220 https://doi.org/10.1007/bf00233842
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/bf00696370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009824462
223 https://doi.org/10.1007/bf00696370
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s002210000623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033430309
226 https://doi.org/10.1007/s002210000623
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00421-016-3346-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040621943
229 https://doi.org/10.1007/s00421-016-3346-6
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s00421-019-04090-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112158392
232 https://doi.org/10.1007/s00421-019-04090-0
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s00424-005-0027-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023480187
235 https://doi.org/10.1007/s00424-005-0027-4
236 rdf:type schema:CreativeWork
237 sg:pub.10.1186/1743-0003-10-99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016278007
238 https://doi.org/10.1186/1743-0003-10-99
239 rdf:type schema:CreativeWork
240 grid-institutes:grid.266515.3 schema:alternateName Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA
241 schema:name Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Ave, Room 101BE, 66045, Lawrence, KS, USA
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...