Quantum Teleportation with Entangled States¶Given by Beam Splittings View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-09

AUTHORS

Karl-Heinz Fichtner, Masanori Ohya

ABSTRACT

Quantum teleportation is rigorously demonstrated with coherent entangled states given by beam splittings. The mathematical scheme of beam splitting has been used to study quantum communication [2] and quantum stochastic [8]. We discuss the teleportation process by means of coherent states in this scheme for the following two cases: (1) Delete the vacuum part from coherent states, whose compensation provides us a perfect teleportation from Alice to Bob. (2) Use fully realistic (physical) coherent states, which gives a non-perfect teleportation but shows that it is exact when the average energy (density) of the coherent vectors goes to infinity. We show that our quantum teleportation scheme with coherent entangled state is more stable than that with the EPR pairs which was previously discussed. More... »

PAGES

229-247

References to SciGraph publications

  • 1999-02. Compound Channels, Transition Expectations, and Liftings in APPLIED MATHEMATICS & OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002200100497

    DOI

    http://dx.doi.org/10.1007/s002200100497

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025810088


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Friedrich Schiller University Jena", 
              "id": "https://www.grid.ac/institutes/grid.9613.d", 
              "name": [
                "Friedrich-Schiller-Universit\u00e4t Jena, Fakult\u00e4t f\u00fcr Mathematik und Informatik, Institut f\u00fcr Angewandte\u00b6Mathematik, 07740 Jena, Germany. E-mail: fichtner@minet.uni-jena.de, DE"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fichtner", 
            "givenName": "Karl-Heinz", 
            "id": "sg:person.014725312043.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725312043.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo University of Science", 
              "id": "https://www.grid.ac/institutes/grid.143643.7", 
              "name": [
                "Department of Information Sciences, Science University of Tokyo, Chiba 278-8510, Japan.\u00b6E-mail: ohya@is.noda.sut.ac.jp, JP"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ohya", 
            "givenName": "Masanori", 
            "id": "sg:person.013365420775.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/s0167-2789(98)00048-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005754577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002459900097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006979639", 
              "https://doi.org/10.1007/s002459900097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.1895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013951720"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-09", 
        "datePublishedReg": "2001-09-01", 
        "description": "Quantum teleportation is rigorously demonstrated with coherent entangled states given by beam splittings. The mathematical scheme of beam splitting has been used to study quantum communication [2] and quantum stochastic [8]. We discuss the teleportation process by means of coherent states in this scheme for the following two cases: (1) Delete the vacuum part from coherent states, whose compensation provides us a perfect teleportation from Alice to Bob. (2) Use fully realistic (physical) coherent states, which gives a non-perfect teleportation but shows that it is exact when the average energy (density) of the coherent vectors goes to infinity. We show that our quantum teleportation scheme with coherent entangled state is more stable than that with the EPR pairs which was previously discussed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002200100497", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "222"
          }
        ], 
        "name": "Quantum Teleportation with Entangled States\u00b6Given by Beam Splittings", 
        "pagination": "229-247", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7af6df979fa872fb90f44cc83e25162889ea30c8112aae331d6881a1c04383ee"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002200100497"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025810088"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002200100497", 
          "https://app.dimensions.ai/details/publication/pub.1025810088"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000513.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs002200100497"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200100497'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200100497'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200100497'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200100497'


     

    This table displays all metadata directly associated to this object as RDF triples.

    81 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002200100497 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Ncdcc6c827b274df293e1ddc56e56f15c
    4 schema:citation sg:pub.10.1007/s002459900097
    5 https://doi.org/10.1016/s0167-2789(98)00048-7
    6 https://doi.org/10.1103/physrevlett.70.1895
    7 schema:datePublished 2001-09
    8 schema:datePublishedReg 2001-09-01
    9 schema:description Quantum teleportation is rigorously demonstrated with coherent entangled states given by beam splittings. The mathematical scheme of beam splitting has been used to study quantum communication [2] and quantum stochastic [8]. We discuss the teleportation process by means of coherent states in this scheme for the following two cases: (1) Delete the vacuum part from coherent states, whose compensation provides us a perfect teleportation from Alice to Bob. (2) Use fully realistic (physical) coherent states, which gives a non-perfect teleportation but shows that it is exact when the average energy (density) of the coherent vectors goes to infinity. We show that our quantum teleportation scheme with coherent entangled state is more stable than that with the EPR pairs which was previously discussed.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N2c5bf930d04a436bbaa942a9d3ec9419
    14 Na45d1d73d13d411990ecbb0aac71c110
    15 sg:journal.1136216
    16 schema:name Quantum Teleportation with Entangled States¶Given by Beam Splittings
    17 schema:pagination 229-247
    18 schema:productId N7ee96d90eb7b486b886077d8e9a45947
    19 Nb6e6cf75a6614f1abbc2c49c92adeeb4
    20 Nfc21583ca530427c94cacba48ce8045e
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025810088
    22 https://doi.org/10.1007/s002200100497
    23 schema:sdDatePublished 2019-04-10T17:32
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N30e37f732a84424485034543c84ac3bb
    26 schema:url http://link.springer.com/10.1007%2Fs002200100497
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N2c5bf930d04a436bbaa942a9d3ec9419 schema:issueNumber 2
    31 rdf:type schema:PublicationIssue
    32 N30e37f732a84424485034543c84ac3bb schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 N7ee96d90eb7b486b886077d8e9a45947 schema:name dimensions_id
    35 schema:value pub.1025810088
    36 rdf:type schema:PropertyValue
    37 Na45d1d73d13d411990ecbb0aac71c110 schema:volumeNumber 222
    38 rdf:type schema:PublicationVolume
    39 Nac212df4d128409e91c5c84d00babf92 rdf:first sg:person.013365420775.41
    40 rdf:rest rdf:nil
    41 Nb6e6cf75a6614f1abbc2c49c92adeeb4 schema:name doi
    42 schema:value 10.1007/s002200100497
    43 rdf:type schema:PropertyValue
    44 Ncdcc6c827b274df293e1ddc56e56f15c rdf:first sg:person.014725312043.86
    45 rdf:rest Nac212df4d128409e91c5c84d00babf92
    46 Nfc21583ca530427c94cacba48ce8045e schema:name readcube_id
    47 schema:value 7af6df979fa872fb90f44cc83e25162889ea30c8112aae331d6881a1c04383ee
    48 rdf:type schema:PropertyValue
    49 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Physical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Other Physical Sciences
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136216 schema:issn 0010-3616
    56 1432-0916
    57 schema:name Communications in Mathematical Physics
    58 rdf:type schema:Periodical
    59 sg:person.013365420775.41 schema:affiliation https://www.grid.ac/institutes/grid.143643.7
    60 schema:familyName Ohya
    61 schema:givenName Masanori
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013365420775.41
    63 rdf:type schema:Person
    64 sg:person.014725312043.86 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
    65 schema:familyName Fichtner
    66 schema:givenName Karl-Heinz
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014725312043.86
    68 rdf:type schema:Person
    69 sg:pub.10.1007/s002459900097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979639
    70 https://doi.org/10.1007/s002459900097
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.1016/s0167-2789(98)00048-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005754577
    73 rdf:type schema:CreativeWork
    74 https://doi.org/10.1103/physrevlett.70.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013951720
    75 rdf:type schema:CreativeWork
    76 https://www.grid.ac/institutes/grid.143643.7 schema:alternateName Tokyo University of Science
    77 schema:name Department of Information Sciences, Science University of Tokyo, Chiba 278-8510, Japan.¶E-mail: ohya@is.noda.sut.ac.jp, JP
    78 rdf:type schema:Organization
    79 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
    80 schema:name Friedrich-Schiller-Universität Jena, Fakultät für Mathematik und Informatik, Institut für Angewandte¶Mathematik, 07740 Jena, Germany. E-mail: fichtner@minet.uni-jena.de, DE
    81 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...