Vertex Operator Solutions of¶2d Dimensionally Reduced Gravity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2000-03

AUTHORS

Denis Bernard, Nicolas Regnault

ABSTRACT

We apply algebraic and vertex operator techniques to solve two dimensional reduced vacuum Einstein's equations. This leads to explicit expressions for the coefficients of metrics solutions of the vacuum equations as ratios of determinants. No quadratures are left. These formulas rely on the identification of dual pairs of vertex operators corresponding to dual metrics related by the Kramer–Neugebauer symmetry. More... »

PAGES

177-201

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002200050776

DOI

http://dx.doi.org/10.1007/s002200050776

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014880174


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L'Institut de physique th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.457338.e", 
          "name": [
            "Service de Physique Th\u00e9orique de Saclay, 91191 Gif-sur-Yvette, France.\u00b6E-mail: dbernard@spht.saclay.cea.fr; regnault@spht.saclay.cea.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bernard", 
        "givenName": "Denis", 
        "id": "sg:person.016244652621.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016244652621.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "L'Institut de physique th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.457338.e", 
          "name": [
            "Service de Physique Th\u00e9orique de Saclay, 91191 Gif-sur-Yvette, France.\u00b6E-mail: dbernard@spht.saclay.cea.fr; regnault@spht.saclay.cea.fr, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Regnault", 
        "givenName": "Nicolas", 
        "id": "sg:person.0753315241.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753315241.96"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000-03", 
    "datePublishedReg": "2000-03-01", 
    "description": "We apply algebraic and vertex operator techniques to solve two dimensional reduced vacuum Einstein's equations. This leads to explicit expressions for the coefficients of metrics solutions of the vacuum equations as ratios of determinants. No quadratures are left. These formulas rely on the identification of dual pairs of vertex operators corresponding to dual metrics related by the Kramer\u2013Neugebauer symmetry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002200050776", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "210"
      }
    ], 
    "name": "Vertex Operator Solutions of\u00b62d Dimensionally Reduced Gravity", 
    "pagination": "177-201", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "46e51273e18cc1d8a28377de67aa25ff46d18eea3b3accfe9c2b1a620445ec28"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002200050776"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014880174"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002200050776", 
      "https://app.dimensions.ai/details/publication/pub.1014880174"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002200050776"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200050776'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200050776'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200050776'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200050776'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002200050776 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbe9d3d9a7ff74d34abadd2f7bbb9c8df
4 schema:datePublished 2000-03
5 schema:datePublishedReg 2000-03-01
6 schema:description We apply algebraic and vertex operator techniques to solve two dimensional reduced vacuum Einstein's equations. This leads to explicit expressions for the coefficients of metrics solutions of the vacuum equations as ratios of determinants. No quadratures are left. These formulas rely on the identification of dual pairs of vertex operators corresponding to dual metrics related by the Kramer–Neugebauer symmetry.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N405f37dea9694d6daeeac11a712e32ec
11 Nddca6492338b451095cb59966030c6b0
12 sg:journal.1136216
13 schema:name Vertex Operator Solutions of¶2d Dimensionally Reduced Gravity
14 schema:pagination 177-201
15 schema:productId N5056d67992614b66a507ec8174ec928e
16 Naafd46bf30ca405bb89b7e00ad3a44bd
17 Nab277bf5cdfc474fb51bf3889c4b56b8
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014880174
19 https://doi.org/10.1007/s002200050776
20 schema:sdDatePublished 2019-04-11T02:00
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nf5532501fef74252983c5f124cb4f86c
23 schema:url http://link.springer.com/10.1007%2Fs002200050776
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N405f37dea9694d6daeeac11a712e32ec schema:volumeNumber 210
28 rdf:type schema:PublicationVolume
29 N5056d67992614b66a507ec8174ec928e schema:name readcube_id
30 schema:value 46e51273e18cc1d8a28377de67aa25ff46d18eea3b3accfe9c2b1a620445ec28
31 rdf:type schema:PropertyValue
32 N5ec272ebf0064b3bb6df7e1d6336e885 rdf:first sg:person.0753315241.96
33 rdf:rest rdf:nil
34 Naafd46bf30ca405bb89b7e00ad3a44bd schema:name doi
35 schema:value 10.1007/s002200050776
36 rdf:type schema:PropertyValue
37 Nab277bf5cdfc474fb51bf3889c4b56b8 schema:name dimensions_id
38 schema:value pub.1014880174
39 rdf:type schema:PropertyValue
40 Nbe9d3d9a7ff74d34abadd2f7bbb9c8df rdf:first sg:person.016244652621.53
41 rdf:rest N5ec272ebf0064b3bb6df7e1d6336e885
42 Nddca6492338b451095cb59966030c6b0 schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 Nf5532501fef74252983c5f124cb4f86c schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136216 schema:issn 0010-3616
53 1432-0916
54 schema:name Communications in Mathematical Physics
55 rdf:type schema:Periodical
56 sg:person.016244652621.53 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
57 schema:familyName Bernard
58 schema:givenName Denis
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016244652621.53
60 rdf:type schema:Person
61 sg:person.0753315241.96 schema:affiliation https://www.grid.ac/institutes/grid.457338.e
62 schema:familyName Regnault
63 schema:givenName Nicolas
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753315241.96
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.457338.e schema:alternateName L'Institut de physique théorique
67 schema:name Service de Physique Théorique de Saclay, 91191 Gif-sur-Yvette, France.¶E-mail: dbernard@spht.saclay.cea.fr; regnault@spht.saclay.cea.fr, FR
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...