Special Kähler Manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-05

AUTHORS

Daniel S. Freed

ABSTRACT

We give an intrinsic definition of the special geometry which arises in global N= 2 supersymmetry in four dimensions. The base of an algebraic integrable system exhibits this geometry, and with an integrality hypothesis any special Kähler manifold is so related to an integrable system. The cotangent bundle of a special Kähler manifold carries a hyperkähler metric. We also define special geometry in supergravity in terms of the special geometry in global supersymmetry. More... »

PAGES

31-52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002200050604

DOI

http://dx.doi.org/10.1007/s002200050604

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040606460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "Schools of Mathematics and Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA. E-mail: dafr@math.utexas.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freed", 
        "givenName": "Daniel S.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-05", 
    "datePublishedReg": "1999-05-01", 
    "description": "We give an intrinsic definition of the special geometry which arises in global N= 2 supersymmetry in four dimensions. The base of an algebraic integrable system exhibits this geometry, and with an integrality hypothesis any special K\u00e4hler manifold is so related to an integrable system. The cotangent bundle of a special K\u00e4hler manifold carries a hyperk\u00e4hler metric. We also define special geometry in supergravity in terms of the special geometry in global supersymmetry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002200050604", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "203"
      }
    ], 
    "name": "Special K\u00e4hler Manifolds", 
    "pagination": "31-52", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c16f38fc0eec2688c2c0c5ff912342b7d3c3fabfb2b1cc1565ccc74e506e2f78"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002200050604"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040606460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002200050604", 
      "https://app.dimensions.ai/details/publication/pub.1040606460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002200050604"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'


 

This table displays all metadata directly associated to this object as RDF triples.

60 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002200050604 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N34b0ab849f9b4986b38eadc8d6645c0a
4 schema:datePublished 1999-05
5 schema:datePublishedReg 1999-05-01
6 schema:description We give an intrinsic definition of the special geometry which arises in global N= 2 supersymmetry in four dimensions. The base of an algebraic integrable system exhibits this geometry, and with an integrality hypothesis any special Kähler manifold is so related to an integrable system. The cotangent bundle of a special Kähler manifold carries a hyperkähler metric. We also define special geometry in supergravity in terms of the special geometry in global supersymmetry.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N4db7b2e1944f47c6801e51a46e102e6e
11 N8554c23a6ddb4a37bda38add1b3a2603
12 sg:journal.1136216
13 schema:name Special Kähler Manifolds
14 schema:pagination 31-52
15 schema:productId N399c7864f6d14b7598a1f7edf30f4bf4
16 N62b144a4edb546e2976af36e10aac34f
17 Nef267ef2a89f415da6d6c2c09399f866
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040606460
19 https://doi.org/10.1007/s002200050604
20 schema:sdDatePublished 2019-04-10T22:32
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nea2a8215079b44e292973f2873371c60
23 schema:url http://link.springer.com/10.1007%2Fs002200050604
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N34b0ab849f9b4986b38eadc8d6645c0a rdf:first Nad45c66cb1af46b6b921ee6d356e47a9
28 rdf:rest rdf:nil
29 N399c7864f6d14b7598a1f7edf30f4bf4 schema:name readcube_id
30 schema:value c16f38fc0eec2688c2c0c5ff912342b7d3c3fabfb2b1cc1565ccc74e506e2f78
31 rdf:type schema:PropertyValue
32 N4db7b2e1944f47c6801e51a46e102e6e schema:volumeNumber 203
33 rdf:type schema:PublicationVolume
34 N62b144a4edb546e2976af36e10aac34f schema:name dimensions_id
35 schema:value pub.1040606460
36 rdf:type schema:PropertyValue
37 N8554c23a6ddb4a37bda38add1b3a2603 schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 Nad45c66cb1af46b6b921ee6d356e47a9 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
40 schema:familyName Freed
41 schema:givenName Daniel S.
42 rdf:type schema:Person
43 Nea2a8215079b44e292973f2873371c60 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nef267ef2a89f415da6d6c2c09399f866 schema:name doi
46 schema:value 10.1007/s002200050604
47 rdf:type schema:PropertyValue
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1136216 schema:issn 0010-3616
55 1432-0916
56 schema:name Communications in Mathematical Physics
57 rdf:type schema:Periodical
58 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
59 schema:name Schools of Mathematics and Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA. E-mail: dafr@math.utexas.edu, US
60 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...