Special Kähler Manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-05

AUTHORS

Daniel S. Freed

ABSTRACT

We give an intrinsic definition of the special geometry which arises in global N= 2 supersymmetry in four dimensions. The base of an algebraic integrable system exhibits this geometry, and with an integrality hypothesis any special Kähler manifold is so related to an integrable system. The cotangent bundle of a special Kähler manifold carries a hyperkähler metric. We also define special geometry in supergravity in terms of the special geometry in global supersymmetry. More... »

PAGES

31-52

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002200050604

DOI

http://dx.doi.org/10.1007/s002200050604

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040606460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.78989.37", 
          "name": [
            "Schools of Mathematics and Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA. E-mail: dafr@math.utexas.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freed", 
        "givenName": "Daniel S.", 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-05", 
    "datePublishedReg": "1999-05-01", 
    "description": "We give an intrinsic definition of the special geometry which arises in global N= 2 supersymmetry in four dimensions. The base of an algebraic integrable system exhibits this geometry, and with an integrality hypothesis any special K\u00e4hler manifold is so related to an integrable system. The cotangent bundle of a special K\u00e4hler manifold carries a hyperk\u00e4hler metric. We also define special geometry in supergravity in terms of the special geometry in global supersymmetry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002200050604", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "203"
      }
    ], 
    "name": "Special K\u00e4hler Manifolds", 
    "pagination": "31-52", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c16f38fc0eec2688c2c0c5ff912342b7d3c3fabfb2b1cc1565ccc74e506e2f78"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002200050604"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040606460"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002200050604", 
      "https://app.dimensions.ai/details/publication/pub.1040606460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002200050604"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200050604'


 

This table displays all metadata directly associated to this object as RDF triples.

60 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002200050604 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ned0151cfe41a498cbece691e3d9b56a9
4 schema:datePublished 1999-05
5 schema:datePublishedReg 1999-05-01
6 schema:description We give an intrinsic definition of the special geometry which arises in global N= 2 supersymmetry in four dimensions. The base of an algebraic integrable system exhibits this geometry, and with an integrality hypothesis any special Kähler manifold is so related to an integrable system. The cotangent bundle of a special Kähler manifold carries a hyperkähler metric. We also define special geometry in supergravity in terms of the special geometry in global supersymmetry.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N4cf20f94a92e4d1dbbf839f5540b537e
11 N92c8618bedbb4d9eab035bd4e28932de
12 sg:journal.1136216
13 schema:name Special Kähler Manifolds
14 schema:pagination 31-52
15 schema:productId N3b0620b7576245f99bc516819bfced19
16 N449f1231fb314634b317501ab1f210a9
17 N5816ec9dc0be4bbfa6904e5a7d8a41e8
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040606460
19 https://doi.org/10.1007/s002200050604
20 schema:sdDatePublished 2019-04-10T22:32
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ned3f67c518fc4053b78099ba96c7e2e0
23 schema:url http://link.springer.com/10.1007%2Fs002200050604
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N3b0620b7576245f99bc516819bfced19 schema:name readcube_id
28 schema:value c16f38fc0eec2688c2c0c5ff912342b7d3c3fabfb2b1cc1565ccc74e506e2f78
29 rdf:type schema:PropertyValue
30 N449f1231fb314634b317501ab1f210a9 schema:name doi
31 schema:value 10.1007/s002200050604
32 rdf:type schema:PropertyValue
33 N4cf20f94a92e4d1dbbf839f5540b537e schema:volumeNumber 203
34 rdf:type schema:PublicationVolume
35 N5816ec9dc0be4bbfa6904e5a7d8a41e8 schema:name dimensions_id
36 schema:value pub.1040606460
37 rdf:type schema:PropertyValue
38 N676bfea038434d23abeb05cd8e97e738 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
39 schema:familyName Freed
40 schema:givenName Daniel S.
41 rdf:type schema:Person
42 N92c8618bedbb4d9eab035bd4e28932de schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 Ned0151cfe41a498cbece691e3d9b56a9 rdf:first N676bfea038434d23abeb05cd8e97e738
45 rdf:rest rdf:nil
46 Ned3f67c518fc4053b78099ba96c7e2e0 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1136216 schema:issn 0010-3616
55 1432-0916
56 schema:name Communications in Mathematical Physics
57 rdf:type schema:Periodical
58 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
59 schema:name Schools of Mathematics and Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, USA. E-mail: dafr@math.utexas.edu, US
60 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...