A Canonical Cellular Decomposition of the Teichmüller Space of Compact Surfaces with Boundary View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-03

AUTHORS

Akira Ushijima

ABSTRACT

Using the Euclidean decomposition of the hyperbolic surface, R. C. Penner gave a canonical cellular decomposition of the decorated Teichmüller space of punctured surfaces, which is invariant by the action of the mapping class group. Adapting his method, we give a canonical cellular decomposition of the Teichmüller space of compact orientable surfaces with non-empty boundary. More... »

PAGES

305-326

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002200050557

DOI

http://dx.doi.org/10.1007/s002200050557

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021095468


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Mathematics, Graduate School of Science, Osaka University, 1\u20131 Machikaneyama-cho,\u00b6Toyonaka, Osaka 560\u20130043, Japan. E-mail: smv001ua@ex.ecip.osaka-u.ac.jp, JP"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushijima", 
        "givenName": "Akira", 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "Using the Euclidean decomposition of the hyperbolic surface, R. C. Penner gave a canonical cellular decomposition of the decorated Teichm\u00fcller space of punctured surfaces, which is invariant by the action of the mapping class group. Adapting his method, we give a canonical cellular decomposition of the Teichm\u00fcller space of compact orientable surfaces with non-empty boundary.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002200050557", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "201"
      }
    ], 
    "name": "A Canonical Cellular Decomposition of the Teichm\u00fcller Space of Compact Surfaces with Boundary", 
    "pagination": "305-326", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "648291159a504e70808dd2d1aeb12119fb023af741c3f9a3d8c0eba92505e204"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002200050557"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021095468"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002200050557", 
      "https://app.dimensions.ai/details/publication/pub.1021095468"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002200050557"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200050557'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200050557'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200050557'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200050557'


 

This table displays all metadata directly associated to this object as RDF triples.

60 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002200050557 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nec871b522a5943bc965800009e5e955f
4 schema:datePublished 1999-03
5 schema:datePublishedReg 1999-03-01
6 schema:description Using the Euclidean decomposition of the hyperbolic surface, R. C. Penner gave a canonical cellular decomposition of the decorated Teichmüller space of punctured surfaces, which is invariant by the action of the mapping class group. Adapting his method, we give a canonical cellular decomposition of the Teichmüller space of compact orientable surfaces with non-empty boundary.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N372b994291a9451d98564d346a2797a2
11 Nd0a19ce9e9f64c549b689e5611838c94
12 sg:journal.1136216
13 schema:name A Canonical Cellular Decomposition of the Teichmüller Space of Compact Surfaces with Boundary
14 schema:pagination 305-326
15 schema:productId N4d789cbf8f8f4052b3fef39e65dfec8a
16 N504089404fa543a89d91f5594a0363e3
17 N8763955add7240aeaf1eb7a6cf7495fe
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021095468
19 https://doi.org/10.1007/s002200050557
20 schema:sdDatePublished 2019-04-10T21:37
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N525395d31b3f4cdb880f0a15961ee937
23 schema:url http://link.springer.com/10.1007%2Fs002200050557
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1f311c6aa3494843aef2573ab1994505 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
28 schema:familyName Ushijima
29 schema:givenName Akira
30 rdf:type schema:Person
31 N372b994291a9451d98564d346a2797a2 schema:volumeNumber 201
32 rdf:type schema:PublicationVolume
33 N4d789cbf8f8f4052b3fef39e65dfec8a schema:name doi
34 schema:value 10.1007/s002200050557
35 rdf:type schema:PropertyValue
36 N504089404fa543a89d91f5594a0363e3 schema:name dimensions_id
37 schema:value pub.1021095468
38 rdf:type schema:PropertyValue
39 N525395d31b3f4cdb880f0a15961ee937 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N8763955add7240aeaf1eb7a6cf7495fe schema:name readcube_id
42 schema:value 648291159a504e70808dd2d1aeb12119fb023af741c3f9a3d8c0eba92505e204
43 rdf:type schema:PropertyValue
44 Nd0a19ce9e9f64c549b689e5611838c94 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 Nec871b522a5943bc965800009e5e955f rdf:first N1f311c6aa3494843aef2573ab1994505
47 rdf:rest rdf:nil
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1136216 schema:issn 0010-3616
55 1432-0916
56 schema:name Communications in Mathematical Physics
57 rdf:type schema:Periodical
58 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
59 schema:name Department of Mathematics, Graduate School of Science, Osaka University, 1–1 Machikaneyama-cho,¶Toyonaka, Osaka 560–0043, Japan. E-mail: smv001ua@ex.ecip.osaka-u.ac.jp, JP
60 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...