“Non-Gibbsian” States and their Gibbs Description View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-01

AUTHORS

R. L. Dobrushin†, S. B. Shlosman

ABSTRACT

The driving principle behind this paper is the following thesis: “Every physically reasonable random field has to be a Gibbs random field”. In this paper the so-called “non-Gibbsian” random fields are considered. The usual definition of the Gibbs field is generalized in such a way so as to include some of the discovered “non-Gibbsian” fields. The new definition is then used to show that the projection of the two-dimensional Ising model onto the one-dimensional sublattice ℤ1 falls into the class of the generalized Gibbs fields. More... »

PAGES

125-179

References to SciGraph publications

  • 1998-06. Renormalization Group Pathologies and the Definition of Gibbs States in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1999-11. Freezing transition in the Ising model without internal contours in PROBABILITY THEORY AND RELATED FIELDS
  • 1986-09. Cluster expansion for abstract polymer models in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002200050525

    DOI

    http://dx.doi.org/10.1007/s002200050525

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048882653


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Centre de Physique Th\u00e9orique", 
              "id": "https://www.grid.ac/institutes/grid.469407.8", 
              "name": [
                "CPT, CNRS, Luminy, Marseille, France, FR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dobrushin\u2020", 
            "givenName": "R. L.", 
            "id": "sg:person.012430110274.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012430110274.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre de Physique Th\u00e9orique", 
              "id": "https://www.grid.ac/institutes/grid.469407.8", 
              "name": [
                "CPT, CNRS, Luminy, Marseille, France, FR"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shlosman", 
            "givenName": "S. B.", 
            "id": "sg:person.01270574244.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270574244.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002200050362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024800052", 
              "https://doi.org/10.1007/s002200050362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004400050246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050861653", 
              "https://doi.org/10.1007/s004400050246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004400050246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050861653", 
              "https://doi.org/10.1007/s004400050246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211762", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051007143", 
              "https://doi.org/10.1007/bf01211762"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1999-01", 
        "datePublishedReg": "1999-01-01", 
        "description": "The driving principle behind this paper is the following thesis: \u201cEvery physically reasonable random field has to be a Gibbs random field\u201d. In this paper the so-called \u201cnon-Gibbsian\u201d random fields are considered. The usual definition of the Gibbs field is generalized in such a way so as to include some of the discovered \u201cnon-Gibbsian\u201d fields. The new definition is then used to show that the projection of the two-dimensional Ising model onto the one-dimensional sublattice \u21241 falls into the class of the generalized Gibbs fields.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s002200050525", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "200"
          }
        ], 
        "name": "\u201cNon-Gibbsian\u201d States and their Gibbs Description", 
        "pagination": "125-179", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e8ddfa35c12395eb836954a72b88f355a0a228419c2d095ca625b7aed4a83a2a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002200050525"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048882653"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002200050525", 
          "https://app.dimensions.ai/details/publication/pub.1048882653"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs002200050525"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200050525'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200050525'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200050525'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200050525'


     

    This table displays all metadata directly associated to this object as RDF triples.

    80 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002200050525 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nbbb9773677664212b77f9d85e920a939
    4 schema:citation sg:pub.10.1007/bf01211762
    5 sg:pub.10.1007/s002200050362
    6 sg:pub.10.1007/s004400050246
    7 schema:datePublished 1999-01
    8 schema:datePublishedReg 1999-01-01
    9 schema:description The driving principle behind this paper is the following thesis: “Every physically reasonable random field has to be a Gibbs random field”. In this paper the so-called “non-Gibbsian” random fields are considered. The usual definition of the Gibbs field is generalized in such a way so as to include some of the discovered “non-Gibbsian” fields. The new definition is then used to show that the projection of the two-dimensional Ising model onto the one-dimensional sublattice ℤ1 falls into the class of the generalized Gibbs fields.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N86c2c405dcc94a0a88eb4e21500c7a45
    14 N923025745aea40378b29ab39c58cb000
    15 sg:journal.1136216
    16 schema:name “Non-Gibbsian” States and their Gibbs Description
    17 schema:pagination 125-179
    18 schema:productId N1df61997171f415786506e3d4d89ccf7
    19 Nca2c716064414c81a48b3dd65afb5bec
    20 Ncc37ac06bd694a4d94839e64af6c5d6f
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048882653
    22 https://doi.org/10.1007/s002200050525
    23 schema:sdDatePublished 2019-04-11T02:03
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N61f2f0f931ca43efb58553ed7ce31560
    26 schema:url http://link.springer.com/10.1007%2Fs002200050525
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N1df61997171f415786506e3d4d89ccf7 schema:name dimensions_id
    31 schema:value pub.1048882653
    32 rdf:type schema:PropertyValue
    33 N61f2f0f931ca43efb58553ed7ce31560 schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N86c2c405dcc94a0a88eb4e21500c7a45 schema:issueNumber 1
    36 rdf:type schema:PublicationIssue
    37 N923025745aea40378b29ab39c58cb000 schema:volumeNumber 200
    38 rdf:type schema:PublicationVolume
    39 Nbbb9773677664212b77f9d85e920a939 rdf:first sg:person.012430110274.62
    40 rdf:rest Nf0748bee94d041dbbe36b68c90910b6e
    41 Nca2c716064414c81a48b3dd65afb5bec schema:name doi
    42 schema:value 10.1007/s002200050525
    43 rdf:type schema:PropertyValue
    44 Ncc37ac06bd694a4d94839e64af6c5d6f schema:name readcube_id
    45 schema:value e8ddfa35c12395eb836954a72b88f355a0a228419c2d095ca625b7aed4a83a2a
    46 rdf:type schema:PropertyValue
    47 Nf0748bee94d041dbbe36b68c90910b6e rdf:first sg:person.01270574244.41
    48 rdf:rest rdf:nil
    49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Mathematical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Pure Mathematics
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136216 schema:issn 0010-3616
    56 1432-0916
    57 schema:name Communications in Mathematical Physics
    58 rdf:type schema:Periodical
    59 sg:person.012430110274.62 schema:affiliation https://www.grid.ac/institutes/grid.469407.8
    60 schema:familyName Dobrushin†
    61 schema:givenName R. L.
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012430110274.62
    63 rdf:type schema:Person
    64 sg:person.01270574244.41 schema:affiliation https://www.grid.ac/institutes/grid.469407.8
    65 schema:familyName Shlosman
    66 schema:givenName S. B.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270574244.41
    68 rdf:type schema:Person
    69 sg:pub.10.1007/bf01211762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051007143
    70 https://doi.org/10.1007/bf01211762
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/s002200050362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024800052
    73 https://doi.org/10.1007/s002200050362
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/s004400050246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050861653
    76 https://doi.org/10.1007/s004400050246
    77 rdf:type schema:CreativeWork
    78 https://www.grid.ac/institutes/grid.469407.8 schema:alternateName Centre de Physique Théorique
    79 schema:name CPT, CNRS, Luminy, Marseille, France, FR
    80 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...