Multiple Instantons Representing Higher-Order Chern–Pontryagin Classes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1997-10

AUTHORS

Joel Spruck, D. H. Tchrakian, Yisong Yang

ABSTRACT

:It has been shown in the work of Chakrabarti, Sherry and Tchrakian that the chiral SO±(4 p) Yang–Mills theory in the Euclidean 4 p (p≥ 2) dimensions allows an axially symmetric self-dual system of equations similar to Witten's instanton equations in the classical 4-dimensional SU(2)∼SO±(4) theory and the solutions represent a new class of instantons. However the rigorous existence of these higher-dimensional instanton solutions has remained open except for the solution of unit charge representing a single instanton. In this paper we establish an existence and uniqueness theorem for multi-instantons of arbitrary charges in the case p≥ 2. These solutions are the first known instantons, with the Chern–Pontryagin index greater than one, of the Yang–Mills model in higher dimensions. Our approach is a study of a nonlinear variational equation defined on the Poincaré half plane. More... »

PAGES

737-751

References to SciGraph publications

  • 2001. Elliptic Partial Differential Equations of Second Order in NONE
  • 1983-12. On multimeron solutions of the Yang-Mills equation in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1979-10. An existence theorem for multimeron solutions to classical Yang-Mills field equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1980-09. On bounded solutions of a classical yang-mills equation in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s002200050186

    DOI

    http://dx.doi.org/10.1007/s002200050186

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018818285


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA, US", 
              "id": "http://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Spruck", 
            "givenName": "Joel", 
            "id": "sg:person.014415615257.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415615257.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Physics, St. Patrick's College at Maynooth, Maynooth, Ireland, and School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland, IE", 
              "id": "http://www.grid.ac/institutes/grid.55940.3d", 
              "name": [
                "Department of Mathematical Physics, St. Patrick's College at Maynooth, Maynooth, Ireland, and School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland, IE"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tchrakian", 
            "givenName": "D. H.", 
            "id": "sg:person.015677715153.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Mathematics and Physics, Polytechnic University, Brooklyn, New York 11201, USA, US", 
              "id": "http://www.grid.ac/institutes/grid.137628.9", 
              "name": [
                "Department of Applied Mathematics and Physics, Polytechnic University, Brooklyn, New York 11201, USA, US"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Yisong", 
            "id": "sg:person.01273451522.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273451522.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02193558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010297227", 
              "https://doi.org/10.1007/bf02193558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01208261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017470091", 
              "https://doi.org/10.1007/bf01208261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61798-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011077577", 
              "https://doi.org/10.1007/978-3-642-61798-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01221127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014112817", 
              "https://doi.org/10.1007/bf01221127"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997-10", 
        "datePublishedReg": "1997-10-01", 
        "description": "Abstract:It has been shown in the work of Chakrabarti, Sherry and Tchrakian that the\nchiral SO\u00b1(4 p) Yang\u2013Mills theory in the Euclidean 4 p (p\u2265 2) dimensions allows an axially symmetric self-dual system of equations similar to Witten's instanton equations in the classical 4-dimensional SU(2)\u223cSO\u00b1(4) theory and the solutions represent a new class of instantons. However the rigorous existence of these higher-dimensional instanton solutions has remained open except for the solution of unit charge representing a single instanton. In this paper we establish an existence and uniqueness theorem for multi-instantons of arbitrary charges in the case p\u2265 2.  These solutions are the first known instantons, with the Chern\u2013Pontryagin index greater than one, of the Yang\u2013Mills model in higher dimensions. Our approach is a study of a nonlinear variational equation defined on the Poincar\u00e9 half plane.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s002200050186", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "188"
          }
        ], 
        "keywords": [
          "instanton equations", 
          "self-dual system", 
          "Yang-Mills model", 
          "nonlinear variational equation", 
          "Yang-Mills theory", 
          "Poincar\u00e9 half plane", 
          "uniqueness theorem", 
          "variational equations", 
          "rigorous existence", 
          "instanton solutions", 
          "higher dimensions", 
          "instantons", 
          "single instanton", 
          "equations", 
          "half plane", 
          "arbitrary charge", 
          "solution", 
          "Tchrakian", 
          "theory", 
          "class", 
          "theorem", 
          "existence", 
          "new class", 
          "dimensions", 
          "unit charge", 
          "model", 
          "approach", 
          "system", 
          "plane", 
          "cases", 
          "work", 
          "charge", 
          "chiral", 
          "index", 
          "Chakrabarti", 
          "study", 
          "sherry", 
          "paper", 
          "work of Chakrabarti", 
          "Euclidean 4 p (p\u2265 2) dimensions", 
          "p (p\u2265 2) dimensions", 
          "symmetric self-dual system", 
          "Witten's instanton equations", 
          "higher-dimensional instanton solutions", 
          "Chern\u2013Pontryagin index", 
          "Multiple Instantons", 
          "Higher-Order Chern\u2013Pontryagin Classes", 
          "Chern\u2013Pontryagin Classes"
        ], 
        "name": "Multiple Instantons Representing Higher-Order Chern\u2013Pontryagin Classes", 
        "pagination": "737-751", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018818285"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s002200050186"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s002200050186", 
          "https://app.dimensions.ai/details/publication/pub.1018818285"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_296.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s002200050186"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200050186'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200050186'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200050186'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200050186'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      22 PREDICATES      78 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s002200050186 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nea6af3b36bb84d83988fa94487665fb7
    4 schema:citation sg:pub.10.1007/978-3-642-61798-0
    5 sg:pub.10.1007/bf01208261
    6 sg:pub.10.1007/bf01221127
    7 sg:pub.10.1007/bf02193558
    8 schema:datePublished 1997-10
    9 schema:datePublishedReg 1997-10-01
    10 schema:description Abstract:It has been shown in the work of Chakrabarti, Sherry and Tchrakian that the chiral SO±(4 p) Yang–Mills theory in the Euclidean 4 p (p≥ 2) dimensions allows an axially symmetric self-dual system of equations similar to Witten's instanton equations in the classical 4-dimensional SU(2)∼SO±(4) theory and the solutions represent a new class of instantons. However the rigorous existence of these higher-dimensional instanton solutions has remained open except for the solution of unit charge representing a single instanton. In this paper we establish an existence and uniqueness theorem for multi-instantons of arbitrary charges in the case p≥ 2. These solutions are the first known instantons, with the Chern–Pontryagin index greater than one, of the Yang–Mills model in higher dimensions. Our approach is a study of a nonlinear variational equation defined on the Poincaré half plane.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N141f4f4985d64eccbe457cc983320e31
    15 N9cce36f92de94866947176d636507207
    16 sg:journal.1136216
    17 schema:keywords Chakrabarti
    18 Chern–Pontryagin Classes
    19 Chern–Pontryagin index
    20 Euclidean 4 p (p≥ 2) dimensions
    21 Higher-Order Chern–Pontryagin Classes
    22 Multiple Instantons
    23 Poincaré half plane
    24 Tchrakian
    25 Witten's instanton equations
    26 Yang-Mills model
    27 Yang-Mills theory
    28 approach
    29 arbitrary charge
    30 cases
    31 charge
    32 chiral
    33 class
    34 dimensions
    35 equations
    36 existence
    37 half plane
    38 higher dimensions
    39 higher-dimensional instanton solutions
    40 index
    41 instanton equations
    42 instanton solutions
    43 instantons
    44 model
    45 new class
    46 nonlinear variational equation
    47 p (p≥ 2) dimensions
    48 paper
    49 plane
    50 rigorous existence
    51 self-dual system
    52 sherry
    53 single instanton
    54 solution
    55 study
    56 symmetric self-dual system
    57 system
    58 theorem
    59 theory
    60 uniqueness theorem
    61 unit charge
    62 variational equations
    63 work
    64 work of Chakrabarti
    65 schema:name Multiple Instantons Representing Higher-Order Chern–Pontryagin Classes
    66 schema:pagination 737-751
    67 schema:productId N0522afc419044a30894937ef31119590
    68 N31a06234140341ec913dbd2229a6528b
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018818285
    70 https://doi.org/10.1007/s002200050186
    71 schema:sdDatePublished 2022-01-01T18:09
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N5174e76f0c254b7b9902825bf2212886
    74 schema:url https://doi.org/10.1007/s002200050186
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N0522afc419044a30894937ef31119590 schema:name doi
    79 schema:value 10.1007/s002200050186
    80 rdf:type schema:PropertyValue
    81 N141f4f4985d64eccbe457cc983320e31 schema:issueNumber 3
    82 rdf:type schema:PublicationIssue
    83 N31a06234140341ec913dbd2229a6528b schema:name dimensions_id
    84 schema:value pub.1018818285
    85 rdf:type schema:PropertyValue
    86 N5174e76f0c254b7b9902825bf2212886 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N6717d2b4261c4555b81b5f54ee80e9f8 rdf:first sg:person.015677715153.97
    89 rdf:rest Nc42ceab7200a4e99951df2f18b08d7d5
    90 N9cce36f92de94866947176d636507207 schema:volumeNumber 188
    91 rdf:type schema:PublicationVolume
    92 Nc42ceab7200a4e99951df2f18b08d7d5 rdf:first sg:person.01273451522.96
    93 rdf:rest rdf:nil
    94 Nea6af3b36bb84d83988fa94487665fb7 rdf:first sg:person.014415615257.04
    95 rdf:rest N6717d2b4261c4555b81b5f54ee80e9f8
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Pure Mathematics
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1136216 schema:issn 0010-3616
    103 1432-0916
    104 schema:name Communications in Mathematical Physics
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.01273451522.96 schema:affiliation grid-institutes:grid.137628.9
    108 schema:familyName Yang
    109 schema:givenName Yisong
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273451522.96
    111 rdf:type schema:Person
    112 sg:person.014415615257.04 schema:affiliation grid-institutes:grid.21107.35
    113 schema:familyName Spruck
    114 schema:givenName Joel
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415615257.04
    116 rdf:type schema:Person
    117 sg:person.015677715153.97 schema:affiliation grid-institutes:grid.55940.3d
    118 schema:familyName Tchrakian
    119 schema:givenName D. H.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015677715153.97
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-3-642-61798-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011077577
    123 https://doi.org/10.1007/978-3-642-61798-0
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01208261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017470091
    126 https://doi.org/10.1007/bf01208261
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf01221127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014112817
    129 https://doi.org/10.1007/bf01221127
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf02193558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010297227
    132 https://doi.org/10.1007/bf02193558
    133 rdf:type schema:CreativeWork
    134 grid-institutes:grid.137628.9 schema:alternateName Department of Applied Mathematics and Physics, Polytechnic University, Brooklyn, New York 11201, USA, US
    135 schema:name Department of Applied Mathematics and Physics, Polytechnic University, Brooklyn, New York 11201, USA, US
    136 rdf:type schema:Organization
    137 grid-institutes:grid.21107.35 schema:alternateName Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA, US
    138 schema:name Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA, US
    139 rdf:type schema:Organization
    140 grid-institutes:grid.55940.3d schema:alternateName Department of Mathematical Physics, St. Patrick's College at Maynooth, Maynooth, Ireland, and School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland, IE
    141 schema:name Department of Mathematical Physics, St. Patrick's College at Maynooth, Maynooth, Ireland, and School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland, IE
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...