A Diagram Calculus for Certain Canonical Bases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-02

AUTHORS

R. M. Green

ABSTRACT

We introduce a certain cellular algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document} which is a quotient of the q-Schur algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document}. This is naturally equipped with a canonical basis which is compatible with Lusztig's canonical bases for certain modules for the quantized enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document}. We describe a diagram calculus for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document} which makes calculations involving the corresponding canonical bases easy to understand. More... »

PAGES

521-532

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s002200050041

DOI

http://dx.doi.org/10.1007/s002200050041

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002116433


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Mathematical Institute, Oxford University, 24\u201329 St. Giles', Oxford OX1 3LB, England. E-mail: greenr@maths.ox.ac.uk, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "R. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1112/plms/s3-59.1.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011677183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/51.3.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/blms/24.4.325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041239757"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-02", 
    "datePublishedReg": "1997-02-01", 
    "description": "We introduce a certain cellular algebra \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\end{document} which is a quotient of the q-Schur algebra \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\end{document}. This is naturally equipped with a canonical basis which is compatible with Lusztig's canonical bases for certain modules for the quantized enveloping algebra \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\end{document}. We describe a diagram calculus for \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} $\\end{document} which makes calculations involving the corresponding canonical bases easy to understand.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s002200050041", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "183"
      }
    ], 
    "name": "A Diagram Calculus for Certain Canonical Bases", 
    "pagination": "521-532", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0a143eeeb3e9a595cd81c636361d8e6fcbae48a0ed801d845b0568e07020c359"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s002200050041"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002116433"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s002200050041", 
      "https://app.dimensions.ai/details/publication/pub.1002116433"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs002200050041"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s002200050041'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s002200050041'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s002200050041'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s002200050041'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s002200050041 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Ndea0155706a74121bc17d5b67ec19692
4 schema:citation https://doi.org/10.1112/blms/24.4.325
5 https://doi.org/10.1112/jlms/51.3.461
6 https://doi.org/10.1112/plms/s3-59.1.23
7 schema:datePublished 1997-02
8 schema:datePublishedReg 1997-02-01
9 schema:description We introduce a certain cellular algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document} which is a quotient of the q-Schur algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document}. This is naturally equipped with a canonical basis which is compatible with Lusztig's canonical bases for certain modules for the quantized enveloping algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document}. We describe a diagram calculus for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\end{document} which makes calculations involving the corresponding canonical bases easy to understand.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N05339bd252cd40adb73b6045b7f48c7e
14 Nc37511a2ff7e478bb763c288774a07b5
15 sg:journal.1136216
16 schema:name A Diagram Calculus for Certain Canonical Bases
17 schema:pagination 521-532
18 schema:productId N2f153544287149e2bdcd82bd70e32e16
19 N6315accc15204721bfb257e5b92ef282
20 Na3bb5db5333d4bc0b8b60059b168bdad
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002116433
22 https://doi.org/10.1007/s002200050041
23 schema:sdDatePublished 2019-04-10T18:19
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Nf0fd0a08938b41ca82e72bc6921b6717
26 schema:url http://link.springer.com/10.1007%2Fs002200050041
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N05339bd252cd40adb73b6045b7f48c7e schema:issueNumber 3
31 rdf:type schema:PublicationIssue
32 N2f153544287149e2bdcd82bd70e32e16 schema:name dimensions_id
33 schema:value pub.1002116433
34 rdf:type schema:PropertyValue
35 N2fc5d3ed95134dd1be413907013051fe schema:affiliation https://www.grid.ac/institutes/grid.4991.5
36 schema:familyName Green
37 schema:givenName R. M.
38 rdf:type schema:Person
39 N6315accc15204721bfb257e5b92ef282 schema:name doi
40 schema:value 10.1007/s002200050041
41 rdf:type schema:PropertyValue
42 Na3bb5db5333d4bc0b8b60059b168bdad schema:name readcube_id
43 schema:value 0a143eeeb3e9a595cd81c636361d8e6fcbae48a0ed801d845b0568e07020c359
44 rdf:type schema:PropertyValue
45 Nc37511a2ff7e478bb763c288774a07b5 schema:volumeNumber 183
46 rdf:type schema:PublicationVolume
47 Ndea0155706a74121bc17d5b67ec19692 rdf:first N2fc5d3ed95134dd1be413907013051fe
48 rdf:rest rdf:nil
49 Nf0fd0a08938b41ca82e72bc6921b6717 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
52 schema:name Biological Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
55 schema:name Biochemistry and Cell Biology
56 rdf:type schema:DefinedTerm
57 sg:journal.1136216 schema:issn 0010-3616
58 1432-0916
59 schema:name Communications in Mathematical Physics
60 rdf:type schema:Periodical
61 https://doi.org/10.1112/blms/24.4.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041239757
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1112/jlms/51.3.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775688
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1112/plms/s3-59.1.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011677183
66 rdf:type schema:CreativeWork
67 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
68 schema:name Mathematical Institute, Oxford University, 24–29 St. Giles', Oxford OX1 3LB, England. E-mail: greenr@maths.ox.ac.uk, UK
69 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...