A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Sunil Chhita, Fabio Lucio Toninelli

ABSTRACT

Stochastic growth processes in dimension (2 + 1) were conjectured by D. Wolf, on the basis of renormalization-group arguments, to fall into two distinct universality classes, according to whether the Hessian Hρ of the speed of growth v(ρ) as a function of the average slope ρ satisfies detHρ>0 (“isotropic KPZ class”) or detHρ≤0 (“anisotropic KPZ (AKPZ)” class). The former is characterized by strictly positive growth and roughness exponents, while in the AKPZ class fluctuations are logarithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth models with “smooth” stationary states, i.e., with O(1) fluctuations (instead of logarithmically or power-like growing, as in Wolf’s picture) and (b) what new phenomena arise when v(·) is not differentiable, so that Hρ is not defined. The two questions are actually related and here we provide an answer to both, in a specific framework. We define a (2 + 1)-dimensional interface growth process, based on the so-called shuffling algorithm for domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs measures on perfect matchings of Z2 , with 2-periodic weights. If ρ≠0 , fluctuations are known to grow logarithmically in space and to behave like a two-dimensional GFF. We prove that fluctuations grow at most logarithmically in time and that detHρ<0 : the model belongs to the AKPZ class. When ρ=0 , instead, the stationary state is “smooth”, with correlations uniformly bounded in space and time; correspondingly, v(·) is not differentiable at ρ=0 and we extract the singularity of the eigenvalues of Hρ for ρ∼0 . More... »

PAGES

1-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-019-03402-x

DOI

http://dx.doi.org/10.1007/s00220-019-03402-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113004384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, Durham University, Stockton Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chhita", 
        "givenName": "Sunil", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "UMR 5208, CNRS, Institut Camille Jordan, Univ Lyon, Universit\u00e9 Claude Bernard Lyon 1, 69622, Villeurbanne Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toninelli", 
        "givenName": "Fabio Lucio", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-84371-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003830235", 
          "https://doi.org/10.1007/978-3-642-84371-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-84371-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003830235", 
          "https://doi.org/10.1007/978-3-642-84371-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2016.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007859447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-013-1823-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013393768", 
          "https://doi.org/10.1007/s00220-013-1823-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-015-1250-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013816632", 
          "https://doi.org/10.1007/s10955-015-1250-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcta.1997.2799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025898750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030206351", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03752-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030206351", 
          "https://doi.org/10.1007/978-3-662-03752-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03752-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030206351", 
          "https://doi.org/10.1007/978-3-662-03752-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3975(02)00815-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036616750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01020782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047043121", 
          "https://doi.org/10.1007/bf01020782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01020782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047043121", 
          "https://doi.org/10.1007/bf01020782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-015-2396-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048051702", 
          "https://doi.org/10.1007/s00220-015-2396-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050349632", 
          "https://doi.org/10.1007/bf01011084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022420103267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051311035", 
          "https://doi.org/10.1023/a:1022420103267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022420103267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051311035", 
          "https://doi.org/10.1023/a:1022420103267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.7162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.45.7162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060485484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.3527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.46.3527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060486130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.042118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.042118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060745389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1117073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062866541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s2010326311300014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063028848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2006.163.1019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2013.178.2.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083662361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.2201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/16-aop1128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091953165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/aihpd/45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093168236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511599798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00029890.1972.11993118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103225540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-018-3202-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105570891", 
          "https://doi.org/10.1007/s00220-018-3202-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Stochastic growth processes in dimension (2 + 1) were conjectured by D. Wolf, on the basis of renormalization-group arguments, to fall into two distinct universality classes, according to whether the Hessian H\u03c1 of the speed of growth v(\u03c1) as a function of the average slope \u03c1 satisfies detH\u03c1>0 (\u201cisotropic KPZ class\u201d) or detH\u03c1\u22640 (\u201canisotropic KPZ (AKPZ)\u201d class). The former is characterized by strictly positive growth and roughness exponents, while in the AKPZ class fluctuations are logarithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth models with \u201csmooth\u201d stationary states, i.e., with O(1) fluctuations (instead of logarithmically or power-like growing, as in Wolf\u2019s picture) and (b) what new phenomena arise when v(\u00b7) is not differentiable, so that H\u03c1 is not defined. The two questions are actually related and here we provide an answer to both, in a specific framework. We define a (2 + 1)-dimensional interface growth process, based on the so-called shuffling algorithm for domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs measures on perfect matchings of Z2 , with 2-periodic weights. If \u03c1\u22600 , fluctuations are known to grow logarithmically in space and to behave like a two-dimensional GFF. We prove that fluctuations grow at most logarithmically in time and that detH\u03c1<0 : the model belongs to the AKPZ class. When \u03c1=0 , instead, the stationary state is \u201csmooth\u201d, with correlations uniformly bounded in space and time; correspondingly, v(\u00b7) is not differentiable at \u03c1=0 and we extract the singularity of the eigenvalues of H\u03c1 for \u03c1\u223c0 .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-019-03402-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase", 
    "pagination": "1-34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e7e392d648ea36de1fb8b190fba15d13f8efac005bbc6b4a169561987874ee7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-019-03402-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113004384"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-019-03402-x", 
      "https://app.dimensions.ai/details/publication/pub.1113004384"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117121_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-019-03402-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03402-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03402-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03402-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03402-x'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-019-03402-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N05186ebfb1f34a1887567afabadd8961
4 schema:citation sg:pub.10.1007/978-3-642-84371-6
5 sg:pub.10.1007/978-3-662-03752-2
6 sg:pub.10.1007/bf01011084
7 sg:pub.10.1007/bf01020782
8 sg:pub.10.1007/s00220-013-1823-x
9 sg:pub.10.1007/s00220-015-2396-7
10 sg:pub.10.1007/s00220-018-3202-0
11 sg:pub.10.1007/s10955-015-1250-9
12 sg:pub.10.1023/a:1022420103267
13 https://app.dimensions.ai/details/publication/pub.1030206351
14 https://doi.org/10.1006/jcta.1997.2799
15 https://doi.org/10.1016/j.aim.2016.02.025
16 https://doi.org/10.1016/s0304-3975(02)00815-0
17 https://doi.org/10.1017/cbo9780511599798
18 https://doi.org/10.1080/00029890.1972.11993118
19 https://doi.org/10.1103/physreva.45.7162
20 https://doi.org/10.1103/physreva.46.3527
21 https://doi.org/10.1103/physreve.88.042118
22 https://doi.org/10.1103/physrevlett.56.889
23 https://doi.org/10.1103/physrevlett.67.1783
24 https://doi.org/10.1137/1117073
25 https://doi.org/10.1142/s2010326311300014
26 https://doi.org/10.1214/16-aop1128
27 https://doi.org/10.24033/asens.2201
28 https://doi.org/10.24033/bsmf.771
29 https://doi.org/10.4007/annals.2006.163.1019
30 https://doi.org/10.4007/annals.2013.178.2.4
31 https://doi.org/10.4171/aihpd/45
32 schema:datePublished 2019-04
33 schema:datePublishedReg 2019-04-01
34 schema:description Stochastic growth processes in dimension (2 + 1) were conjectured by D. Wolf, on the basis of renormalization-group arguments, to fall into two distinct universality classes, according to whether the Hessian Hρ of the speed of growth v(ρ) as a function of the average slope ρ satisfies detHρ>0 (“isotropic KPZ class”) or detHρ≤0 (“anisotropic KPZ (AKPZ)” class). The former is characterized by strictly positive growth and roughness exponents, while in the AKPZ class fluctuations are logarithmic in time and space. It is natural to ask (a) if one can exhibit interesting growth models with “smooth” stationary states, i.e., with O(1) fluctuations (instead of logarithmically or power-like growing, as in Wolf’s picture) and (b) what new phenomena arise when v(·) is not differentiable, so that Hρ is not defined. The two questions are actually related and here we provide an answer to both, in a specific framework. We define a (2 + 1)-dimensional interface growth process, based on the so-called shuffling algorithm for domino tilings. The stationary, non-reversible measures are translation-invariant Gibbs measures on perfect matchings of Z2 , with 2-periodic weights. If ρ≠0 , fluctuations are known to grow logarithmically in space and to behave like a two-dimensional GFF. We prove that fluctuations grow at most logarithmically in time and that detHρ<0 : the model belongs to the AKPZ class. When ρ=0 , instead, the stationary state is “smooth”, with correlations uniformly bounded in space and time; correspondingly, v(·) is not differentiable at ρ=0 and we extract the singularity of the eigenvalues of Hρ for ρ∼0 .
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N45ed80a6e33e4fbeb3498d7927453ec1
39 N4abb7906b1544a169def42bc31dc3e0c
40 sg:journal.1136216
41 schema:name A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase
42 schema:pagination 1-34
43 schema:productId N5a5c097359564d67862c400927ae845e
44 N89c2941d6f3e412dbfcf6994ac3537c3
45 Neb15a10b8ab8486f97d71077f0947cc4
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113004384
47 https://doi.org/10.1007/s00220-019-03402-x
48 schema:sdDatePublished 2019-04-11T14:20
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N318804a9dd6c40bd87e8ee3addd15d9c
51 schema:url https://link.springer.com/10.1007%2Fs00220-019-03402-x
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N05186ebfb1f34a1887567afabadd8961 rdf:first Nc53de4268d5940e288087dd123b8a435
56 rdf:rest N385f88b07a634c7dbf9957899de72c96
57 N318804a9dd6c40bd87e8ee3addd15d9c schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N385f88b07a634c7dbf9957899de72c96 rdf:first N56ce42595cd447c4980c8454ba312947
60 rdf:rest rdf:nil
61 N45ed80a6e33e4fbeb3498d7927453ec1 schema:volumeNumber 367
62 rdf:type schema:PublicationVolume
63 N4abb7906b1544a169def42bc31dc3e0c schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N56ce42595cd447c4980c8454ba312947 schema:affiliation N6a1e9318b2fb4ece8ce782531c646315
66 schema:familyName Toninelli
67 schema:givenName Fabio Lucio
68 rdf:type schema:Person
69 N5a5c097359564d67862c400927ae845e schema:name readcube_id
70 schema:value 1e7e392d648ea36de1fb8b190fba15d13f8efac005bbc6b4a169561987874ee7
71 rdf:type schema:PropertyValue
72 N6a1e9318b2fb4ece8ce782531c646315 schema:name UMR 5208, CNRS, Institut Camille Jordan, Univ Lyon, Université Claude Bernard Lyon 1, 69622, Villeurbanne Cedex, France
73 rdf:type schema:Organization
74 N89c2941d6f3e412dbfcf6994ac3537c3 schema:name doi
75 schema:value 10.1007/s00220-019-03402-x
76 rdf:type schema:PropertyValue
77 Nc53de4268d5940e288087dd123b8a435 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
78 schema:familyName Chhita
79 schema:givenName Sunil
80 rdf:type schema:Person
81 Neb15a10b8ab8486f97d71077f0947cc4 schema:name dimensions_id
82 schema:value pub.1113004384
83 rdf:type schema:PropertyValue
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136216 schema:issn 0010-3616
91 1432-0916
92 schema:name Communications in Mathematical Physics
93 rdf:type schema:Periodical
94 sg:pub.10.1007/978-3-642-84371-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003830235
95 https://doi.org/10.1007/978-3-642-84371-6
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-662-03752-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030206351
98 https://doi.org/10.1007/978-3-662-03752-2
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01011084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050349632
101 https://doi.org/10.1007/bf01011084
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01020782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047043121
104 https://doi.org/10.1007/bf01020782
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00220-013-1823-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013393768
107 https://doi.org/10.1007/s00220-013-1823-x
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00220-015-2396-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048051702
110 https://doi.org/10.1007/s00220-015-2396-7
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00220-018-3202-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105570891
113 https://doi.org/10.1007/s00220-018-3202-0
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10955-015-1250-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013816632
116 https://doi.org/10.1007/s10955-015-1250-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1023/a:1022420103267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051311035
119 https://doi.org/10.1023/a:1022420103267
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1030206351 schema:CreativeWork
122 https://doi.org/10.1006/jcta.1997.2799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025898750
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.aim.2016.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007859447
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0304-3975(02)00815-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036616750
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1017/cbo9780511599798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667651
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1080/00029890.1972.11993118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103225540
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physreva.45.7162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060485484
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreva.46.3527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060486130
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreve.88.042118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060745389
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.56.889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793614
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.67.1783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803196
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1137/1117073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866541
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1142/s2010326311300014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063028848
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1214/16-aop1128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091953165
147 rdf:type schema:CreativeWork
148 https://doi.org/10.24033/asens.2201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408557
149 rdf:type schema:CreativeWork
150 https://doi.org/10.24033/bsmf.771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083662361
151 rdf:type schema:CreativeWork
152 https://doi.org/10.4007/annals.2006.163.1019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866954
153 rdf:type schema:CreativeWork
154 https://doi.org/10.4007/annals.2013.178.2.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867507
155 rdf:type schema:CreativeWork
156 https://doi.org/10.4171/aihpd/45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093168236
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
159 schema:name Department of Mathematical Sciences, Durham University, Stockton Road, DH1 3LE, Durham, UK
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...