Seiberg–Witten Differential via Primitive Forms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Si Li, Dan Xie, Shing-Tung Yau

ABSTRACT

Three-fold quasi-homogeneous isolated rational singularity is argued to define a four dimensional N=2 SCFT. The Seiberg–Witten geometry is built on the mini-versal deformation of the singularity. We argue in this paper that the corresponding Seiberg–Witten differential is given by the Gelfand–Leray form of K. Saito’s primitive form. Our result also extends the Seiberg–Witten solution to include irrelevant deformations. More... »

PAGES

193-214

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-019-03401-y

DOI

http://dx.doi.org/10.1007/s00220-019-03401-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112829534


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, China", 
            "Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Si", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Center of Mathematical Sciences and Applications, Harvard University, 02138, Cambridge, USA", 
            "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Dan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA", 
            "Center of Mathematical Sciences and Applications, Harvard University, 02138, Cambridge, USA", 
            "Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yau", 
        "givenName": "Shing-Tung", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/jhep08(2012)034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000072911", 
          "https://doi.org/10.1007/jhep08(2012)034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90214-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003449052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90214-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003449052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004599896", 
          "https://doi.org/10.1007/bf02096559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004599896", 
          "https://doi.org/10.1007/bf02096559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-80236-1_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005156033", 
          "https://doi.org/10.1007/978-3-322-80236-1_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0094793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009294791", 
          "https://doi.org/10.1007/bfb0094793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2015)123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011988102", 
          "https://doi.org/10.1007/jhep11(2015)123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90456-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017080810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90456-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017080810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0705-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017737295", 
          "https://doi.org/10.1007/978-1-4612-0705-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0705-4_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017737295", 
          "https://doi.org/10.1007/978-1-4612-0705-4_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00408-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018223937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01017145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028903788", 
          "https://doi.org/10.1007/bf01017145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90124-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029241838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(94)90124-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029241838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2013)100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036285701", 
          "https://doi.org/10.1007/jhep01(2013)100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1037192738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1037192738", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00609-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038207339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90021-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048225772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90021-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048225772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90129-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052036053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(91)90129-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052036053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90425-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052676519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90425-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052676519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195182028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073136806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084454596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2017.v21.n1.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084656687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2017.v21.n3.a6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091363287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511543104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098787146"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Three-fold quasi-homogeneous isolated rational singularity is argued to define a four dimensional N=2 SCFT. The Seiberg\u2013Witten geometry is built on the mini-versal deformation of the singularity. We argue in this paper that the corresponding Seiberg\u2013Witten differential is given by the Gelfand\u2013Leray form of K. Saito\u2019s primitive form. Our result also extends the Seiberg\u2013Witten solution to include irrelevant deformations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-019-03401-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3106617", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3135260", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3087950", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "Seiberg\u2013Witten Differential via Primitive Forms", 
    "pagination": "193-214", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4bace68d1ea421a2077b08f39d107a54ac63f881601a9fce719ee4c35e76c05e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-019-03401-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112829534"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-019-03401-y", 
      "https://app.dimensions.ai/details/publication/pub.1112829534"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46737_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-019-03401-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03401-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03401-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03401-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03401-y'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-019-03401-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb15a5dfc779a44bbb6106ed213491585
4 schema:citation sg:pub.10.1007/978-1-4612-0705-4_11
5 sg:pub.10.1007/978-3-322-80236-1_1
6 sg:pub.10.1007/bf01017145
7 sg:pub.10.1007/bf02096559
8 sg:pub.10.1007/bfb0094793
9 sg:pub.10.1007/jhep01(2013)100
10 sg:pub.10.1007/jhep08(2012)034
11 sg:pub.10.1007/jhep11(2015)123
12 https://app.dimensions.ai/details/publication/pub.1037192738
13 https://doi.org/10.1016/0550-3213(84)90425-5
14 https://doi.org/10.1016/0550-3213(84)90456-5
15 https://doi.org/10.1016/0550-3213(91)90021-o
16 https://doi.org/10.1016/0550-3213(91)90129-l
17 https://doi.org/10.1016/0550-3213(94)90124-4
18 https://doi.org/10.1016/0550-3213(94)90214-3
19 https://doi.org/10.1016/0550-3213(95)00609-5
20 https://doi.org/10.1016/s0550-3213(97)00408-2
21 https://doi.org/10.1017/cbo9780511543104
22 https://doi.org/10.2977/prims/1195182028
23 https://doi.org/10.4171/jems/691
24 https://doi.org/10.4310/atmp.2017.v21.n1.a2
25 https://doi.org/10.4310/atmp.2017.v21.n3.a6
26 https://doi.org/10.5802/aif.1157
27 https://doi.org/10.5802/aif.1974
28 schema:datePublished 2019-04
29 schema:datePublishedReg 2019-04-01
30 schema:description Three-fold quasi-homogeneous isolated rational singularity is argued to define a four dimensional N=2 SCFT. The Seiberg–Witten geometry is built on the mini-versal deformation of the singularity. We argue in this paper that the corresponding Seiberg–Witten differential is given by the Gelfand–Leray form of K. Saito’s primitive form. Our result also extends the Seiberg–Witten solution to include irrelevant deformations.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N1c672e1b437449e7bd2878711937cbeb
35 N4fdd2acf26114bdbba4b799da17fca16
36 sg:journal.1136216
37 schema:name Seiberg–Witten Differential via Primitive Forms
38 schema:pagination 193-214
39 schema:productId Nb7bdfadf87434a8abd21326fcf2a673c
40 Ncbc18b612f4f461781aa6abd7d057475
41 Nd1d180ac1f384e87bc7937c9ebdd6317
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112829534
43 https://doi.org/10.1007/s00220-019-03401-y
44 schema:sdDatePublished 2019-04-11T13:27
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nf4077abed77f4b80a3863ffc20dba5ea
47 schema:url https://link.springer.com/10.1007%2Fs00220-019-03401-y
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N041891c2ac154f769a39acb27699dc61 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
52 schema:familyName Yau
53 schema:givenName Shing-Tung
54 rdf:type schema:Person
55 N1b9c45b5fa7a46049453bbf415d6281c schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
56 schema:familyName Xie
57 schema:givenName Dan
58 rdf:type schema:Person
59 N1c672e1b437449e7bd2878711937cbeb schema:volumeNumber 367
60 rdf:type schema:PublicationVolume
61 N4fdd2acf26114bdbba4b799da17fca16 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N7a75597a51ca4ad98495efaae8c33fc3 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
64 schema:familyName Li
65 schema:givenName Si
66 rdf:type schema:Person
67 Nb15a5dfc779a44bbb6106ed213491585 rdf:first N7a75597a51ca4ad98495efaae8c33fc3
68 rdf:rest Ne185aa4b7a714e83a953bff596495405
69 Nb7bdfadf87434a8abd21326fcf2a673c schema:name doi
70 schema:value 10.1007/s00220-019-03401-y
71 rdf:type schema:PropertyValue
72 Ncbc18b612f4f461781aa6abd7d057475 schema:name readcube_id
73 schema:value 4bace68d1ea421a2077b08f39d107a54ac63f881601a9fce719ee4c35e76c05e
74 rdf:type schema:PropertyValue
75 Nd1d180ac1f384e87bc7937c9ebdd6317 schema:name dimensions_id
76 schema:value pub.1112829534
77 rdf:type schema:PropertyValue
78 Nd9b7de68896641708d8555a81351069a rdf:first N041891c2ac154f769a39acb27699dc61
79 rdf:rest rdf:nil
80 Ne185aa4b7a714e83a953bff596495405 rdf:first N1b9c45b5fa7a46049453bbf415d6281c
81 rdf:rest Nd9b7de68896641708d8555a81351069a
82 Nf4077abed77f4b80a3863ffc20dba5ea schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:grant.3087950 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03401-y
91 rdf:type schema:MonetaryGrant
92 sg:grant.3106617 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03401-y
93 rdf:type schema:MonetaryGrant
94 sg:grant.3135260 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03401-y
95 rdf:type schema:MonetaryGrant
96 sg:journal.1136216 schema:issn 0010-3616
97 1432-0916
98 schema:name Communications in Mathematical Physics
99 rdf:type schema:Periodical
100 sg:pub.10.1007/978-1-4612-0705-4_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017737295
101 https://doi.org/10.1007/978-1-4612-0705-4_11
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-322-80236-1_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005156033
104 https://doi.org/10.1007/978-3-322-80236-1_1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01017145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028903788
107 https://doi.org/10.1007/bf01017145
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02096559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004599896
110 https://doi.org/10.1007/bf02096559
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bfb0094793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009294791
113 https://doi.org/10.1007/bfb0094793
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/jhep01(2013)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285701
116 https://doi.org/10.1007/jhep01(2013)100
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/jhep08(2012)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000072911
119 https://doi.org/10.1007/jhep08(2012)034
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/jhep11(2015)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011988102
122 https://doi.org/10.1007/jhep11(2015)123
123 rdf:type schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1037192738 schema:CreativeWork
125 https://doi.org/10.1016/0550-3213(84)90425-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052676519
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0550-3213(84)90456-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017080810
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0550-3213(91)90021-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1048225772
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0550-3213(91)90129-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1052036053
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0550-3213(94)90124-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029241838
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0550-3213(94)90214-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003449052
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0550-3213(95)00609-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038207339
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0550-3213(97)00408-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018223937
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1017/cbo9780511543104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787146
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2977/prims/1195182028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935136
144 rdf:type schema:CreativeWork
145 https://doi.org/10.4171/jems/691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084454596
146 rdf:type schema:CreativeWork
147 https://doi.org/10.4310/atmp.2017.v21.n1.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084656687
148 rdf:type schema:CreativeWork
149 https://doi.org/10.4310/atmp.2017.v21.n3.a6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091363287
150 rdf:type schema:CreativeWork
151 https://doi.org/10.5802/aif.1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073136806
152 rdf:type schema:CreativeWork
153 https://doi.org/10.5802/aif.1974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137713
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
156 schema:name Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, China
157 Yau Mathematical Sciences Center, Tsinghua University, 100084, Beijing, China
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
160 schema:name Center of Mathematical Sciences and Applications, Harvard University, 02138, Cambridge, USA
161 Department of Mathematics, Harvard University, 02138, Cambridge, MA, USA
162 Jefferson Physical Laboratory, Harvard University, 02138, Cambridge, MA, USA
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...