Supersymmetric Field Theories from Twisted Vector Bundles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Augusto Stoffel

ABSTRACT

We give a description of the delocalized twisted cohomology of an orbifold and the Chern character of a twisted vector bundle in terms of supersymmetric Euclidean field theories. This includes the construction of a twist functor for 1|1-dimensional EFTs from the data of a gerbe with connection.

PAGES

1-37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-019-03390-y

DOI

http://dx.doi.org/10.1007/s00220-019-03390-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112829532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.461798.5", 
          "name": [
            "Max Planck Institute for Mathematics, Vivatsgasse 7, 53111, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoffel", 
        "givenName": "Augusto", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.geomphys.2005.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003415963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01135536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005749637", 
          "https://doi.org/10.1007/bf01135536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01135536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005749637", 
          "https://doi.org/10.1007/bf01135536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-9383(85)90047-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011369218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2005.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027283688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4731-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041242720", 
          "https://doi.org/10.1007/978-0-8176-4731-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4731-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041242720", 
          "https://doi.org/10.1007/978-0-8176-4731-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200200646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042547607", 
          "https://doi.org/10.1007/s002200200646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-003-0849-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043114007", 
          "https://doi.org/10.1007/s00220-003-0849-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-015-2371-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045829725", 
          "https://doi.org/10.1007/s00220-015-2371-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-480440-1.50015-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046481098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.2008.236.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069071807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/qt/12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072319988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jsg.2011.v9.n3.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072460805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/088/01462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089191632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/083/2742432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089197778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511526398.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089395531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/crmp/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097022481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/agt.2019.19.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112050734"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We give a description of the delocalized twisted cohomology of an orbifold and the Chern character of a twisted vector bundle in terms of supersymmetric Euclidean field theories. This includes the construction of a twist functor for 1|1-dimensional EFTs from the data of a gerbe with connection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-019-03390-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3138363", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Supersymmetric Field Theories from Twisted Vector Bundles", 
    "pagination": "1-37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f26eeef4ba5fa9bb3d7f799fc5bc4c331293251c6ab33c1420c31f7b308ba140"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-019-03390-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112829532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-019-03390-y", 
      "https://app.dimensions.ai/details/publication/pub.1112829532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117109_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-019-03390-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03390-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03390-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03390-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03390-y'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      20 PREDICATES      40 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-019-03390-y schema:author Nff812ef7a78c4dcc9dd83333031fe5cd
2 schema:citation sg:pub.10.1007/978-0-8176-4731-5
3 sg:pub.10.1007/bf01135536
4 sg:pub.10.1007/s00220-003-0849-x
5 sg:pub.10.1007/s00220-015-2371-3
6 sg:pub.10.1007/s002200200646
7 https://doi.org/10.1016/0040-9383(85)90047-3
8 https://doi.org/10.1016/b978-0-12-480440-1.50015-0
9 https://doi.org/10.1016/j.aim.2005.12.001
10 https://doi.org/10.1016/j.geomphys.2005.08.006
11 https://doi.org/10.1017/cbo9780511526398.013
12 https://doi.org/10.1090/crmp/050
13 https://doi.org/10.1090/pspum/083/2742432
14 https://doi.org/10.1090/pspum/088/01462
15 https://doi.org/10.2140/agt.2019.19.109
16 https://doi.org/10.2140/pjm.2008.236.307
17 https://doi.org/10.4171/qt/12
18 https://doi.org/10.4310/jsg.2011.v9.n3.a2
19 schema:datePublished 2019-04
20 schema:datePublishedReg 2019-04-01
21 schema:description We give a description of the delocalized twisted cohomology of an orbifold and the Chern character of a twisted vector bundle in terms of supersymmetric Euclidean field theories. This includes the construction of a twist functor for 1|1-dimensional EFTs from the data of a gerbe with connection.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf sg:journal.1136216
26 schema:name Supersymmetric Field Theories from Twisted Vector Bundles
27 schema:pagination 1-37
28 schema:productId N1e61c7fe5b0948af99302f1197767838
29 N4b08697c81d341088e1480d17d0b7f58
30 N99674979c6f340b1b117b4ec6fdd82ad
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112829532
32 https://doi.org/10.1007/s00220-019-03390-y
33 schema:sdDatePublished 2019-04-11T14:19
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nb415c05a19f646cb9b799594780a6d1e
36 schema:url https://link.springer.com/10.1007%2Fs00220-019-03390-y
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N030679c239be473ba5517a242382772f schema:affiliation https://www.grid.ac/institutes/grid.461798.5
41 schema:familyName Stoffel
42 schema:givenName Augusto
43 rdf:type schema:Person
44 N1e61c7fe5b0948af99302f1197767838 schema:name readcube_id
45 schema:value f26eeef4ba5fa9bb3d7f799fc5bc4c331293251c6ab33c1420c31f7b308ba140
46 rdf:type schema:PropertyValue
47 N4b08697c81d341088e1480d17d0b7f58 schema:name dimensions_id
48 schema:value pub.1112829532
49 rdf:type schema:PropertyValue
50 N99674979c6f340b1b117b4ec6fdd82ad schema:name doi
51 schema:value 10.1007/s00220-019-03390-y
52 rdf:type schema:PropertyValue
53 Nb415c05a19f646cb9b799594780a6d1e schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nff812ef7a78c4dcc9dd83333031fe5cd rdf:first N030679c239be473ba5517a242382772f
56 rdf:rest rdf:nil
57 sg:grant.3138363 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03390-y
58 rdf:type schema:MonetaryGrant
59 sg:journal.1136216 schema:issn 0010-3616
60 1432-0916
61 schema:name Communications in Mathematical Physics
62 rdf:type schema:Periodical
63 sg:pub.10.1007/978-0-8176-4731-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041242720
64 https://doi.org/10.1007/978-0-8176-4731-5
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/bf01135536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005749637
67 https://doi.org/10.1007/bf01135536
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/s00220-003-0849-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043114007
70 https://doi.org/10.1007/s00220-003-0849-x
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/s00220-015-2371-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045829725
73 https://doi.org/10.1007/s00220-015-2371-3
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/s002200200646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042547607
76 https://doi.org/10.1007/s002200200646
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/0040-9383(85)90047-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011369218
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/b978-0-12-480440-1.50015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046481098
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/j.aim.2005.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027283688
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.geomphys.2005.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003415963
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1017/cbo9780511526398.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089395531
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1090/crmp/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097022481
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/pspum/083/2742432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089197778
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1090/pspum/088/01462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089191632
93 rdf:type schema:CreativeWork
94 https://doi.org/10.2140/agt.2019.19.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112050734
95 rdf:type schema:CreativeWork
96 https://doi.org/10.2140/pjm.2008.236.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069071807
97 rdf:type schema:CreativeWork
98 https://doi.org/10.4171/qt/12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072319988
99 rdf:type schema:CreativeWork
100 https://doi.org/10.4310/jsg.2011.v9.n3.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072460805
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.461798.5 schema:alternateName Max Planck Institute for Mathematics
103 schema:name Max Planck Institute for Mathematics, Vivatsgasse 7, 53111, Bonn, Germany
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...