A Two-Dimensional Labile Aether Through Homogenization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Marc Briane, Gilles A. Francfort

ABSTRACT

Homogenization in linear elliptic problems usually assumes coercivity of the accompanying Dirichlet form. In linear elasticity, coercivity is not ensured through mere (strong) ellipticity so that the usual estimates that render homogenization meaningful break down unless stronger assumptions, like very strong ellipticity, are put into place. Here, we demonstrate that a L2-type homogenization process can still be performed, very strong ellipticity notwithstanding, for a specific two-phase two dimensional problem whose significance derives from prior work establishing that one can lose strong ellipticity in such a setting, provided that homogenization turns out to be meaningful. A striking consequence is that, in an elasto-dynamic setting, some two-phase homogenized laminate may support plane wave propagation in the direction of lamination on a bounded domain with Dirichlet boundary conditions, a possibility which does not exist for the associated two-phase microstructure at a fixed scale. Also, that material blocks longitudinal waves in the direction of lamination, thereby acting as a two-dimensional aether in the sense of e.g. Cauchy. More... »

PAGES

1-30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-019-03333-7

DOI

http://dx.doi.org/10.1007/s00220-019-03333-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111919247


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Briane", 
        "givenName": "Marc", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "LAGA, Universit\u00e9 Paris-Nord & Courant Institute of Mathematical Sciences, New York University, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Francfort", 
        "givenName": "Gilles A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-61859-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035236248", 
          "https://doi.org/10.1007/978-3-642-61859-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61859-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035236248", 
          "https://doi.org/10.1007/978-3-642-61859-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007670013167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047049893", 
          "https://doi.org/10.1023/a:1007670013167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00380256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047218734", 
          "https://doi.org/10.1007/bf00380256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00380256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047218734", 
          "https://doi.org/10.1007/bf00380256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053501390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500014967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054893201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/qjmam/57.4.571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059985455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0520043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0523084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062848497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202515500220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/jep.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084953872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-018-1290-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105927007", 
          "https://doi.org/10.1007/s00205-018-1290-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Homogenization in linear elliptic problems usually assumes coercivity of the accompanying Dirichlet form. In linear elasticity, coercivity is not ensured through mere (strong) ellipticity so that the usual estimates that render homogenization meaningful break down unless stronger assumptions, like very strong ellipticity, are put into place. Here, we demonstrate that a L2-type homogenization process can still be performed, very strong ellipticity notwithstanding, for a specific two-phase two dimensional problem whose significance derives from prior work establishing that one can lose strong ellipticity in such a setting, provided that homogenization turns out to be meaningful. A striking consequence is that, in an elasto-dynamic setting, some two-phase homogenized laminate may support plane wave propagation in the direction of lamination on a bounded domain with Dirichlet boundary conditions, a possibility which does not exist for the associated two-phase microstructure at a fixed scale. Also, that material blocks longitudinal waves in the direction of lamination, thereby acting as a two-dimensional aether in the sense of e.g. Cauchy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-019-03333-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5544876", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "A Two-Dimensional Labile Aether Through Homogenization", 
    "pagination": "1-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fe9e190d2297737966262c511e315266538fb38a97cc279140d4b4885994086a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-019-03333-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111919247"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-019-03333-7", 
      "https://app.dimensions.ai/details/publication/pub.1111919247"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117091_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-019-03333-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03333-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03333-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03333-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03333-7'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-019-03333-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N0a387decdd8b4e428e18d36ecd2751f0
4 schema:citation sg:pub.10.1007/978-3-642-61859-8
5 sg:pub.10.1007/bf00380256
6 sg:pub.10.1007/s00205-018-1290-9
7 sg:pub.10.1023/a:1007670013167
8 https://doi.org/10.1016/j.crma.2016.09.014
9 https://doi.org/10.1017/s0308210500014967
10 https://doi.org/10.1093/qjmam/57.4.571
11 https://doi.org/10.1137/0520043
12 https://doi.org/10.1137/0523084
13 https://doi.org/10.1142/s0218202515500220
14 https://doi.org/10.5802/jep.49
15 schema:datePublished 2019-04
16 schema:datePublishedReg 2019-04-01
17 schema:description Homogenization in linear elliptic problems usually assumes coercivity of the accompanying Dirichlet form. In linear elasticity, coercivity is not ensured through mere (strong) ellipticity so that the usual estimates that render homogenization meaningful break down unless stronger assumptions, like very strong ellipticity, are put into place. Here, we demonstrate that a L2-type homogenization process can still be performed, very strong ellipticity notwithstanding, for a specific two-phase two dimensional problem whose significance derives from prior work establishing that one can lose strong ellipticity in such a setting, provided that homogenization turns out to be meaningful. A striking consequence is that, in an elasto-dynamic setting, some two-phase homogenized laminate may support plane wave propagation in the direction of lamination on a bounded domain with Dirichlet boundary conditions, a possibility which does not exist for the associated two-phase microstructure at a fixed scale. Also, that material blocks longitudinal waves in the direction of lamination, thereby acting as a two-dimensional aether in the sense of e.g. Cauchy.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nf153c26580dc40d3b721411270d97fe1
22 Nf7e3398afd8d4692864095b9b6580c41
23 sg:journal.1136216
24 schema:name A Two-Dimensional Labile Aether Through Homogenization
25 schema:pagination 1-30
26 schema:productId N1734da2f28904e6d945c434f9a5ab74a
27 Nb54c7f89cd6646b794bc642e88248699
28 Nbb3930831f834b6382c8dac16bc32a46
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111919247
30 https://doi.org/10.1007/s00220-019-03333-7
31 schema:sdDatePublished 2019-04-11T14:17
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N9fcb2a636cfa43b2ac5779fc7e2dc228
34 schema:url https://link.springer.com/10.1007%2Fs00220-019-03333-7
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N0a387decdd8b4e428e18d36ecd2751f0 rdf:first N53e23a0e5aaf4b1d9d67680f0dcec280
39 rdf:rest N5a05ee14fd3b410db0bdf39662d53bae
40 N1734da2f28904e6d945c434f9a5ab74a schema:name doi
41 schema:value 10.1007/s00220-019-03333-7
42 rdf:type schema:PropertyValue
43 N53e23a0e5aaf4b1d9d67680f0dcec280 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
44 schema:familyName Briane
45 schema:givenName Marc
46 rdf:type schema:Person
47 N5a05ee14fd3b410db0bdf39662d53bae rdf:first N7fa884c6e5b9488a951ef438fbcd1038
48 rdf:rest rdf:nil
49 N7fa884c6e5b9488a951ef438fbcd1038 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
50 schema:familyName Francfort
51 schema:givenName Gilles A.
52 rdf:type schema:Person
53 N9fcb2a636cfa43b2ac5779fc7e2dc228 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nb54c7f89cd6646b794bc642e88248699 schema:name readcube_id
56 schema:value fe9e190d2297737966262c511e315266538fb38a97cc279140d4b4885994086a
57 rdf:type schema:PropertyValue
58 Nbb3930831f834b6382c8dac16bc32a46 schema:name dimensions_id
59 schema:value pub.1111919247
60 rdf:type schema:PropertyValue
61 Nf153c26580dc40d3b721411270d97fe1 schema:issueNumber 2
62 rdf:type schema:PublicationIssue
63 Nf7e3398afd8d4692864095b9b6580c41 schema:volumeNumber 367
64 rdf:type schema:PublicationVolume
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:grant.5544876 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03333-7
72 rdf:type schema:MonetaryGrant
73 sg:journal.1136216 schema:issn 0010-3616
74 1432-0916
75 schema:name Communications in Mathematical Physics
76 rdf:type schema:Periodical
77 sg:pub.10.1007/978-3-642-61859-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035236248
78 https://doi.org/10.1007/978-3-642-61859-8
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf00380256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047218734
81 https://doi.org/10.1007/bf00380256
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s00205-018-1290-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105927007
84 https://doi.org/10.1007/s00205-018-1290-9
85 rdf:type schema:CreativeWork
86 sg:pub.10.1023/a:1007670013167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047049893
87 https://doi.org/10.1023/a:1007670013167
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.crma.2016.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053501390
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/s0308210500014967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054893201
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1093/qjmam/57.4.571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059985455
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1137/0520043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848153
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1137/0523084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062848497
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1142/s0218202515500220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963625
100 rdf:type schema:CreativeWork
101 https://doi.org/10.5802/jep.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084953872
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
104 schema:name LAGA, Université Paris-Nord & Courant Institute of Mathematical Sciences, New York University, New York, USA
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.410368.8 schema:alternateName University of Rennes 1
107 schema:name Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, 35000, Rennes, France
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...