Ising Model: Local Spin Correlations and Conformal Invariance View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-14

AUTHORS

Reza Gheissari, Clément Hongler, S. C. Park

ABSTRACT

We study the 2-dimensional Ising model at critical temperature on a simply connected subset Ωδ of the square grid δZ2. The scaling limit of the critical Ising model is conjectured to be described by Conformal Field Theory; in particular, there is expected to be a precise correspondence between local lattice fields of the Ising model and the local fields of Conformal Field Theory. Towards the proof of this correspondence, we analyze arbitrary spin pattern probabilities (probabilities of finite spin configurations occurring at the origin), explicitly obtain their infinite-volume limits, and prove their conformal covariance at the first (non-trivial) order. We formulate these probabilities in terms of discrete fermionic observables, enabling the study of their scaling limits. This generalizes results of Hongler (Conformal invariance of Ising model correlations. Ph.D. thesis, [Hon10]), Hongler and Smirnov (Acta Math 211(2):191–225, [HoSm13]), Chelkak, Hongler, and Izyurov (Ann. Math. 181(3), 1087–1138, [CHI15]) to one-point functions of any local spin correlations. We introduce a collection of tools which allow one to exactly and explicitly translate any spin pattern probability (and hence any lattice local field correlation) in terms of discrete complex analysis quantities. The proof requires working with multipoint lattice spinors with monodromy (including construction of explicit formulae in the full plane), and refined analysis near their source points to prove convergence to the appropriate continuous conformally covariant functions. More... »

PAGES

1-63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-019-03312-y

DOI

http://dx.doi.org/10.1007/s00220-019-03312-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112112908


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gheissari", 
        "givenName": "Reza", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL SB MATHAA CSFT, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hongler", 
        "givenName": "Cl\u00e9ment", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Ecole Polytechnique F\u00e9d\u00e9rale de Lausanne, EPFL SB MATHAA CSFT, 1015, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "S. C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.20370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012190443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200000348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017813550", 
          "https://doi.org/10.1007/s002200000348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-006-0175-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023721760", 
          "https://doi.org/10.1007/s00220-006-0175-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-006-0175-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023721760", 
          "https://doi.org/10.1007/s00220-006-0175-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crma.2013.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024519001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02980577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027226374", 
          "https://doi.org/10.1007/bf02980577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11511-013-0102-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028273992", 
          "https://doi.org/10.1007/s11511-013-0102-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90241-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90241-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1460-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031970703", 
          "https://doi.org/10.1007/s00220-012-1460-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1151-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035479211", 
          "https://doi.org/10.1007/s00220-010-1151-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1151-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035479211", 
          "https://doi.org/10.1007/s00220-010-1151-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(87)90196-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038793235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4149(87)90196-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038793235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32891-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039134845", 
          "https://doi.org/10.1007/978-3-540-32891-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-32891-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039134845", 
          "https://doi.org/10.1007/978-3-540-32891-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-011-0371-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039904436", 
          "https://doi.org/10.1007/s00222-011-0371-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ejp.v9-228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048223133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-013-1763-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051479782", 
          "https://doi.org/10.1007/s00220-013-1763-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-009-0210-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052155064", 
          "https://doi.org/10.1007/s00440-009-0210-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-009-0210-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052155064", 
          "https://doi.org/10.1007/s00440-009-0210-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-009-0210-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052155064", 
          "https://doi.org/10.1007/s00440-009-0210-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2011.06.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052228446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-2013-00774-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059339448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/jams/824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059342390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.60.252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.60.252", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.65.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.65.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.76.1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.76.1232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.76.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.76.1244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060455199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060459000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.3.3918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060535397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.3.3918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060535397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.14306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.14306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1019160260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064402892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.172.1441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.172.1441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2015.181.3.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4159/harvard.9780674180758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099309007"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-14", 
    "datePublishedReg": "2019-02-14", 
    "description": "We study the 2-dimensional Ising model at critical temperature on a simply connected subset \u03a9\u03b4 of the square grid \u03b4Z2. The scaling limit of the critical Ising model is conjectured to be described by Conformal Field Theory; in particular, there is expected to be a precise correspondence between local lattice fields of the Ising model and the local fields of Conformal Field Theory. Towards the proof of this correspondence, we analyze arbitrary spin pattern probabilities (probabilities of finite spin configurations occurring at the origin), explicitly obtain their infinite-volume limits, and prove their conformal covariance at the first (non-trivial) order. We formulate these probabilities in terms of discrete fermionic observables, enabling the study of their scaling limits. This generalizes results of Hongler (Conformal invariance of Ising model correlations. Ph.D. thesis, [Hon10]), Hongler and Smirnov (Acta Math 211(2):191\u2013225, [HoSm13]), Chelkak, Hongler, and Izyurov (Ann. Math. 181(3), 1087\u20131138, [CHI15]) to one-point functions of any local spin correlations. We introduce a collection of tools which allow one to exactly and explicitly translate any spin pattern probability (and hence any lattice local field correlation) in terms of discrete complex analysis quantities. The proof requires working with multipoint lattice spinors with monodromy (including construction of explicit formulae in the full plane), and refined analysis near their source points to prove convergence to the appropriate continuous conformally covariant functions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-019-03312-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3083621", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3125221", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }
    ], 
    "name": "Ising Model: Local Spin Correlations and Conformal Invariance", 
    "pagination": "1-63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51ea13a6fcf17e3b00f6f52eeaeffaed599daa01f82210f55a427c635297f3f1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-019-03312-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112112908"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-019-03312-y", 
      "https://app.dimensions.ai/details/publication/pub.1112112908"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54017_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-019-03312-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03312-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03312-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03312-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03312-y'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      53 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-019-03312-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N282a4077c0124b42ad28af502b0b0a18
4 schema:citation sg:pub.10.1007/978-3-540-32891-9
5 sg:pub.10.1007/bf02980577
6 sg:pub.10.1007/s00220-006-0175-1
7 sg:pub.10.1007/s00220-010-1151-3
8 sg:pub.10.1007/s00220-012-1460-9
9 sg:pub.10.1007/s00220-013-1763-5
10 sg:pub.10.1007/s002200000348
11 sg:pub.10.1007/s00222-011-0371-2
12 sg:pub.10.1007/s00440-009-0210-1
13 sg:pub.10.1007/s11511-013-0102-1
14 https://doi.org/10.1002/cpa.20370
15 https://doi.org/10.1016/0304-4149(87)90196-7
16 https://doi.org/10.1016/0550-3213(84)90241-4
17 https://doi.org/10.1016/j.aim.2011.06.025
18 https://doi.org/10.1016/j.crma.2013.12.002
19 https://doi.org/10.1090/jams/824
20 https://doi.org/10.1090/s0894-0347-2013-00774-2
21 https://doi.org/10.1103/physrev.60.252
22 https://doi.org/10.1103/physrev.65.117
23 https://doi.org/10.1103/physrev.76.1232
24 https://doi.org/10.1103/physrev.76.1244
25 https://doi.org/10.1103/physrev.85.808
26 https://doi.org/10.1103/physrevb.3.3918
27 https://doi.org/10.1103/physrevb.47.14306
28 https://doi.org/10.1214/aop/1019160260
29 https://doi.org/10.1214/ejp.v9-228
30 https://doi.org/10.4007/annals.2010.172.1441
31 https://doi.org/10.4007/annals.2015.181.3.5
32 https://doi.org/10.4159/harvard.9780674180758
33 schema:datePublished 2019-02-14
34 schema:datePublishedReg 2019-02-14
35 schema:description We study the 2-dimensional Ising model at critical temperature on a simply connected subset Ωδ of the square grid δZ2. The scaling limit of the critical Ising model is conjectured to be described by Conformal Field Theory; in particular, there is expected to be a precise correspondence between local lattice fields of the Ising model and the local fields of Conformal Field Theory. Towards the proof of this correspondence, we analyze arbitrary spin pattern probabilities (probabilities of finite spin configurations occurring at the origin), explicitly obtain their infinite-volume limits, and prove their conformal covariance at the first (non-trivial) order. We formulate these probabilities in terms of discrete fermionic observables, enabling the study of their scaling limits. This generalizes results of Hongler (Conformal invariance of Ising model correlations. Ph.D. thesis, [Hon10]), Hongler and Smirnov (Acta Math 211(2):191–225, [HoSm13]), Chelkak, Hongler, and Izyurov (Ann. Math. 181(3), 1087–1138, [CHI15]) to one-point functions of any local spin correlations. We introduce a collection of tools which allow one to exactly and explicitly translate any spin pattern probability (and hence any lattice local field correlation) in terms of discrete complex analysis quantities. The proof requires working with multipoint lattice spinors with monodromy (including construction of explicit formulae in the full plane), and refined analysis near their source points to prove convergence to the appropriate continuous conformally covariant functions.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf sg:journal.1136216
40 schema:name Ising Model: Local Spin Correlations and Conformal Invariance
41 schema:pagination 1-63
42 schema:productId N2edb5601bea64a9da9a74c3cefb44071
43 N81c1d636a1a44a3782cc78fa74ee4a48
44 Nc98d03b0efc0421bbaf049787e1d9cbc
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112112908
46 https://doi.org/10.1007/s00220-019-03312-y
47 schema:sdDatePublished 2019-04-11T12:16
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N546ab377a3c34497b7f3fa18bbc4eba7
50 schema:url https://link.springer.com/10.1007%2Fs00220-019-03312-y
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N282a4077c0124b42ad28af502b0b0a18 rdf:first Nd93ec0c3987849d5b7be26ec2d447d04
55 rdf:rest N9cf203249f60426cb70ad34c13baa8c3
56 N2edb5601bea64a9da9a74c3cefb44071 schema:name doi
57 schema:value 10.1007/s00220-019-03312-y
58 rdf:type schema:PropertyValue
59 N517c7d1bd34642d499ef3b99066e38e7 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
60 schema:familyName Hongler
61 schema:givenName Clément
62 rdf:type schema:Person
63 N546ab377a3c34497b7f3fa18bbc4eba7 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N63c8c069beae48b1b86c92eede7f2da7 rdf:first Nd45c04ff47f0443cad7265f94414b437
66 rdf:rest rdf:nil
67 N81c1d636a1a44a3782cc78fa74ee4a48 schema:name readcube_id
68 schema:value 51ea13a6fcf17e3b00f6f52eeaeffaed599daa01f82210f55a427c635297f3f1
69 rdf:type schema:PropertyValue
70 N9cf203249f60426cb70ad34c13baa8c3 rdf:first N517c7d1bd34642d499ef3b99066e38e7
71 rdf:rest N63c8c069beae48b1b86c92eede7f2da7
72 Nc98d03b0efc0421bbaf049787e1d9cbc schema:name dimensions_id
73 schema:value pub.1112112908
74 rdf:type schema:PropertyValue
75 Nd45c04ff47f0443cad7265f94414b437 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
76 schema:familyName Park
77 schema:givenName S. C.
78 rdf:type schema:Person
79 Nd93ec0c3987849d5b7be26ec2d447d04 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
80 schema:familyName Gheissari
81 schema:givenName Reza
82 rdf:type schema:Person
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:grant.3083621 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03312-y
90 rdf:type schema:MonetaryGrant
91 sg:grant.3125221 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03312-y
92 rdf:type schema:MonetaryGrant
93 sg:journal.1136216 schema:issn 0010-3616
94 1432-0916
95 schema:name Communications in Mathematical Physics
96 rdf:type schema:Periodical
97 sg:pub.10.1007/978-3-540-32891-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039134845
98 https://doi.org/10.1007/978-3-540-32891-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02980577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027226374
101 https://doi.org/10.1007/bf02980577
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s00220-006-0175-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023721760
104 https://doi.org/10.1007/s00220-006-0175-1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00220-010-1151-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035479211
107 https://doi.org/10.1007/s00220-010-1151-3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00220-012-1460-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031970703
110 https://doi.org/10.1007/s00220-012-1460-9
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00220-013-1763-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051479782
113 https://doi.org/10.1007/s00220-013-1763-5
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s002200000348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017813550
116 https://doi.org/10.1007/s002200000348
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00222-011-0371-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039904436
119 https://doi.org/10.1007/s00222-011-0371-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00440-009-0210-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052155064
122 https://doi.org/10.1007/s00440-009-0210-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11511-013-0102-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028273992
125 https://doi.org/10.1007/s11511-013-0102-1
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/cpa.20370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012190443
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0304-4149(87)90196-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038793235
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0550-3213(84)90241-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031952650
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.aim.2011.06.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052228446
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.crma.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024519001
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1090/jams/824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059342390
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1090/s0894-0347-2013-00774-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339448
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrev.60.252 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060451761
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrev.65.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060452328
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrev.76.1232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060455198
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrev.76.1244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060455199
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrev.85.808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060459000
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.3.3918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060535397
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.47.14306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565333
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1214/aop/1019160260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064402892
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1214/ejp.v9-228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048223133
158 rdf:type schema:CreativeWork
159 https://doi.org/10.4007/annals.2010.172.1441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867254
160 rdf:type schema:CreativeWork
161 https://doi.org/10.4007/annals.2015.181.3.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867592
162 rdf:type schema:CreativeWork
163 https://doi.org/10.4159/harvard.9780674180758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099309007
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
166 schema:name Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., 10012, New York, NY, USA
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
169 schema:name Ecole Polytechnique Fédérale de Lausanne, EPFL SB MATHAA CSFT, 1015, Lausanne, Switzerland
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...