Asymptotic Behavior of the Maxwell–Klein–Gordon System View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Timothy Candy, Christopher Kauffman, Hans Lindblad

ABSTRACT

In previous work on the Maxwell–Klein–Gordon system, first global existence and then decay estimates have been shown. Here we show that the Maxwell–Klein–Gordon system in the Lorenz gauge satisfies the weak null condition and give detailed asymptotics for the scalar field and the potential. These asymptotics have two parts, one wave like along outgoing light cones at null infinity, and one homogeneous inside the light cone at time like infinity. Here, the charge plays a crucial role in imposing an oscillating factor in the asymptotic system for the field, and in the null asymptotics for the potential. The Maxwell–Klein–Gordon system, apart from being of interest in its own right, also provides a simpler semi-linear model of the quasi-linear Einstein’s equations where similar asymptotic results have previously been obtained in wave coordinates. More... »

PAGES

1-34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-019-03285-y

DOI

http://dx.doi.org/10.1007/s00220-019-03285-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111615601


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bielefeld University", 
          "id": "https://www.grid.ac/institutes/grid.7491.b", 
          "name": [
            "Fakult\u00e4t f\u00fcr Mathematik, Universit\u00e4t Bielefeld, Postfach 100131, 33501, Bielefeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Candy", 
        "givenName": "Timothy", 
        "id": "sg:person.07575775150.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575775150.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins University, Krieger Hall, 3400 N. Charles Street, 21218, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kauffman", 
        "givenName": "Christopher", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Johns Hopkins University, Krieger Hall, 3400 N. Charles Street, 21218, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindblad", 
        "givenName": "Hans", 
        "id": "sg:person.0660517024.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660517024.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02099131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015273331", 
          "https://doi.org/10.1007/bf02099131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015273331", 
          "https://doi.org/10.1007/bf02099131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02099131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015273331", 
          "https://doi.org/10.1007/bf02099131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309908820708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019490237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160430202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026940650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160430202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026940650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309908821421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033008257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033211346", 
          "https://doi.org/10.1007/bf01976040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033211346", 
          "https://doi.org/10.1007/bf01976040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042834351", 
          "https://doi.org/10.1007/bf01976041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01976041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042834351", 
          "https://doi.org/10.1007/bf01976041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-004-1281-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047510537", 
          "https://doi.org/10.1007/s00220-004-1281-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-004-1281-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047510537", 
          "https://doi.org/10.1007/s00220-004-1281-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/imrp/2006/52976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063206446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-94-07402-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.1401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.1401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-017-2876-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084763641", 
          "https://doi.org/10.1007/s00220-017-2876-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cag.2017.v25.n1.a2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085977732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/apde.2016.9.1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087286501"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "In previous work on the Maxwell\u2013Klein\u2013Gordon system, first global existence and then decay estimates have been shown. Here we show that the Maxwell\u2013Klein\u2013Gordon system in the Lorenz gauge satisfies the weak null condition and give detailed asymptotics for the scalar field and the potential. These asymptotics have two parts, one wave like along outgoing light cones at null infinity, and one homogeneous inside the light cone at time like infinity. Here, the charge plays a crucial role in imposing an oscillating factor in the asymptotic system for the field, and in the null asymptotics for the potential. The Maxwell\u2013Klein\u2013Gordon system, apart from being of interest in its own right, also provides a simpler semi-linear model of the quasi-linear Einstein\u2019s equations where similar asymptotic results have previously been obtained in wave coordinates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-019-03285-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3982354", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "Asymptotic Behavior of the Maxwell\u2013Klein\u2013Gordon System", 
    "pagination": "1-34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21d59246c2d499f859d76f7c206524bd3718df9efa3efff5396b6d2230ffdcc5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-019-03285-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111615601"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-019-03285-y", 
      "https://app.dimensions.ai/details/publication/pub.1111615601"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117109_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-019-03285-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03285-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03285-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03285-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-019-03285-y'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-019-03285-y schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author Nf736fc32e01e4f04b24fe0c58abf3a2b
4 schema:citation sg:pub.10.1007/bf01976040
5 sg:pub.10.1007/bf01976041
6 sg:pub.10.1007/bf02099131
7 sg:pub.10.1007/s00220-004-1281-6
8 sg:pub.10.1007/s00220-017-2876-z
9 https://doi.org/10.1002/cpa.3160430202
10 https://doi.org/10.1080/03605309908820708
11 https://doi.org/10.1080/03605309908821421
12 https://doi.org/10.1155/imrp/2006/52976
13 https://doi.org/10.1215/s0012-7094-94-07402-4
14 https://doi.org/10.2140/apde.2016.9.1829
15 https://doi.org/10.4007/annals.2010.171.1401
16 https://doi.org/10.4310/cag.2017.v25.n1.a2
17 schema:datePublished 2019-04
18 schema:datePublishedReg 2019-04-01
19 schema:description In previous work on the Maxwell–Klein–Gordon system, first global existence and then decay estimates have been shown. Here we show that the Maxwell–Klein–Gordon system in the Lorenz gauge satisfies the weak null condition and give detailed asymptotics for the scalar field and the potential. These asymptotics have two parts, one wave like along outgoing light cones at null infinity, and one homogeneous inside the light cone at time like infinity. Here, the charge plays a crucial role in imposing an oscillating factor in the asymptotic system for the field, and in the null asymptotics for the potential. The Maxwell–Klein–Gordon system, apart from being of interest in its own right, also provides a simpler semi-linear model of the quasi-linear Einstein’s equations where similar asymptotic results have previously been obtained in wave coordinates.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N21c255debff241bf9239796c6e305ae2
24 N41b37c1d7ea34f59b18f5dc615c14e7d
25 sg:journal.1136216
26 schema:name Asymptotic Behavior of the Maxwell–Klein–Gordon System
27 schema:pagination 1-34
28 schema:productId N1f6c92bb94aa4381a18c511c121f1739
29 N755822374b5943cbaa7211888c93cfa1
30 N8702b8c7d8234505b18e6dac6724cdee
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111615601
32 https://doi.org/10.1007/s00220-019-03285-y
33 schema:sdDatePublished 2019-04-11T14:19
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Ne2d4c56bd65044cf91cafef0cbb163ab
36 schema:url https://link.springer.com/10.1007%2Fs00220-019-03285-y
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N1f6c92bb94aa4381a18c511c121f1739 schema:name dimensions_id
41 schema:value pub.1111615601
42 rdf:type schema:PropertyValue
43 N21c255debff241bf9239796c6e305ae2 schema:volumeNumber 367
44 rdf:type schema:PublicationVolume
45 N41b37c1d7ea34f59b18f5dc615c14e7d schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 N5e4cd0129034465096d745d0cb91fc0e schema:affiliation https://www.grid.ac/institutes/grid.21107.35
48 schema:familyName Kauffman
49 schema:givenName Christopher
50 rdf:type schema:Person
51 N5f988888c2834318a97b9fe6ee51e23c rdf:first sg:person.0660517024.34
52 rdf:rest rdf:nil
53 N755822374b5943cbaa7211888c93cfa1 schema:name readcube_id
54 schema:value 21d59246c2d499f859d76f7c206524bd3718df9efa3efff5396b6d2230ffdcc5
55 rdf:type schema:PropertyValue
56 N8702b8c7d8234505b18e6dac6724cdee schema:name doi
57 schema:value 10.1007/s00220-019-03285-y
58 rdf:type schema:PropertyValue
59 Nc72ad35612df443893779757fe723605 rdf:first N5e4cd0129034465096d745d0cb91fc0e
60 rdf:rest N5f988888c2834318a97b9fe6ee51e23c
61 Ne2d4c56bd65044cf91cafef0cbb163ab schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nf736fc32e01e4f04b24fe0c58abf3a2b rdf:first sg:person.07575775150.27
64 rdf:rest Nc72ad35612df443893779757fe723605
65 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
66 schema:name Engineering
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
69 schema:name Maritime Engineering
70 rdf:type schema:DefinedTerm
71 sg:grant.3982354 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-019-03285-y
72 rdf:type schema:MonetaryGrant
73 sg:journal.1136216 schema:issn 0010-3616
74 1432-0916
75 schema:name Communications in Mathematical Physics
76 rdf:type schema:Periodical
77 sg:person.0660517024.34 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
78 schema:familyName Lindblad
79 schema:givenName Hans
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660517024.34
81 rdf:type schema:Person
82 sg:person.07575775150.27 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
83 schema:familyName Candy
84 schema:givenName Timothy
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575775150.27
86 rdf:type schema:Person
87 sg:pub.10.1007/bf01976040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033211346
88 https://doi.org/10.1007/bf01976040
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01976041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042834351
91 https://doi.org/10.1007/bf01976041
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf02099131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015273331
94 https://doi.org/10.1007/bf02099131
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s00220-004-1281-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047510537
97 https://doi.org/10.1007/s00220-004-1281-6
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s00220-017-2876-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084763641
100 https://doi.org/10.1007/s00220-017-2876-z
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1002/cpa.3160430202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026940650
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/03605309908820708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019490237
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/03605309908821421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033008257
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1155/imrp/2006/52976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063206446
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1215/s0012-7094-94-07402-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419958
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2140/apde.2016.9.1829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087286501
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4007/annals.2010.171.1401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867200
115 rdf:type schema:CreativeWork
116 https://doi.org/10.4310/cag.2017.v25.n1.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085977732
117 rdf:type schema:CreativeWork
118 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
119 schema:name Johns Hopkins University, Krieger Hall, 3400 N. Charles Street, 21218, Baltimore, MD, USA
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.7491.b schema:alternateName Bielefeld University
122 schema:name Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...