Blow-up Profiles for the Parabolic–Elliptic Keller–Segel System in Dimensions n≥3 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

Philippe Souplet, Michael Winkler

ABSTRACT

We study the blow-up asymptotics of radially decreasing solutions of the parabolic–elliptic Keller–Segel–Patlak system in space dimensions n≥3. In view of the biological background of this system and of its mass conservation property, blowup is usually interpreted as a phenomenon of concentration or aggregation of the bacterial population. Understanding the asymptotic behavior of solutions at the blowup time is thus meaningful for the interpretation of the model. Under mild assumptions on the initial data, for n≥3, we show that the final profile satisfies C1|x|-2≤u(x,T)≤C2|x|-2, with convergence in L1 as t→T.This is in sharp contrast with the two-dimensional case, where solutions are known to concentrate to a Dirac mass at the origin (plus an integrable part). We also obtain refined space–time estimates of the form u(x, t) ≤ C(T−t + |x|2)−1 for type I blowup solutions. Previous work had shown that radial, self-similar blowup solutions (which satisfy the above estimates) exist in dimensions n≥3 and do not exist in dimension 2. Our results thus reveal that the final profile displayed by these special solutions actually corresponds to a much more general phenomenon. More... »

PAGES

1-17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-018-3238-1

DOI

http://dx.doi.org/10.1007/s00220-018-3238-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106542395


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris 13 University", 
          "id": "https://www.grid.ac/institutes/grid.11318.3a", 
          "name": [
            "Laboratoire Analyse, G\u00e9om\u00e9trie et Applications, CNRS UMR 7539, Universit\u00e9 Paris 13, Sorbonne Paris Cit\u00e9, 93430, Villetaneuse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Souplet", 
        "givenName": "Philippe", 
        "id": "sg:person.015141366665.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141366665.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Paderborn", 
          "id": "https://www.grid.ac/institutes/grid.5659.f", 
          "name": [
            "Institut f\u00fcr Mathematik, Universit\u00e4t Paderborn, 33098, Paderborn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winkler", 
        "givenName": "Michael", 
        "id": "sg:person.014177276211.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177276211.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00208-013-1002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004376345", 
          "https://doi.org/10.1007/s00208-013-1002-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00032-003-0026-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005299137", 
          "https://doi.org/10.1007/s00032-003-0026-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7385-7_28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018147973", 
          "https://doi.org/10.1007/3-7643-7385-7_28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(89)90131-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020241147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309208820896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021028258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/17/6/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021285125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(98)00104-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024479441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s000390050123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029496000", 
          "https://doi.org/10.1007/s000390050123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-010-0394-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031528274", 
          "https://doi.org/10.1007/s00205-010-0394-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2010.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033196439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605309208820839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036010547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1992-1046835-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038252534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1619/fesi.48.247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039148158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1619/fesi.48.247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039148158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01445268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044525431", 
          "https://doi.org/10.1007/bf01445268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01445268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044525431", 
          "https://doi.org/10.1007/bf01445268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/12/4/320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059108865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/21/5/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059109773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmjm/1181072494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064431156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0294-1449(16)30352-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084044579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm-67-2-297-308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092031179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm-68-2-229-239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092041969"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We study the blow-up asymptotics of radially decreasing solutions of the parabolic\u2013elliptic Keller\u2013Segel\u2013Patlak system in space dimensions n\u22653. In view of the biological background of this system and of its mass conservation property, blowup is usually interpreted as a phenomenon of concentration or aggregation of the bacterial population. Understanding the asymptotic behavior of solutions at the blowup time is thus meaningful for the interpretation of the model. Under mild assumptions on the initial data, for n\u22653, we show that the final profile satisfies C1|x|-2\u2264u(x,T)\u2264C2|x|-2, with convergence in L1 as t\u2192T.This is in sharp contrast with the two-dimensional case, where solutions are known to concentrate to a Dirac mass at the origin (plus an integrable part). We also obtain refined space\u2013time estimates of the form u(x, t) \u2264 C(T\u2212t + |x|2)\u22121 for type I blowup solutions. Previous work had shown that radial, self-similar blowup solutions (which satisfy the above estimates) exist in dimensions n\u22653 and do not exist in dimension 2. Our results thus reveal that the final profile displayed by these special solutions actually corresponds to a much more general phenomenon.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-018-3238-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "Blow-up Profiles for the Parabolic\u2013Elliptic Keller\u2013Segel System in Dimensions n\u22653", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83ed6e624fc0c8436c1f484ea994f2d27b5925385d1f7aae718692121a88bfcf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-018-3238-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106542395"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-018-3238-1", 
      "https://app.dimensions.ai/details/publication/pub.1106542395"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117091_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00220-018-3238-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3238-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3238-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3238-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3238-1'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-018-3238-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N59dc69ac9d744179ae1f25cfbf3949a1
4 schema:citation sg:pub.10.1007/3-7643-7385-7_28
5 sg:pub.10.1007/bf01445268
6 sg:pub.10.1007/s00032-003-0026-x
7 sg:pub.10.1007/s000390050123
8 sg:pub.10.1007/s00205-010-0394-7
9 sg:pub.10.1007/s00208-013-1002-6
10 https://doi.org/10.1016/0022-0396(89)90131-9
11 https://doi.org/10.1016/j.jde.2010.10.016
12 https://doi.org/10.1016/s0294-1449(16)30352-3
13 https://doi.org/10.1016/s0377-0427(98)00104-6
14 https://doi.org/10.1080/03605309208820839
15 https://doi.org/10.1080/03605309208820896
16 https://doi.org/10.1088/0951-7715/12/4/320
17 https://doi.org/10.1088/0951-7715/17/6/007
18 https://doi.org/10.1088/0951-7715/21/5/009
19 https://doi.org/10.1090/s0002-9947-1992-1046835-6
20 https://doi.org/10.1216/rmjm/1181072494
21 https://doi.org/10.1619/fesi.48.247
22 https://doi.org/10.4064/cm-67-2-297-308
23 https://doi.org/10.4064/cm-68-2-229-239
24 schema:datePublished 2019-04
25 schema:datePublishedReg 2019-04-01
26 schema:description We study the blow-up asymptotics of radially decreasing solutions of the parabolic–elliptic Keller–Segel–Patlak system in space dimensions n≥3. In view of the biological background of this system and of its mass conservation property, blowup is usually interpreted as a phenomenon of concentration or aggregation of the bacterial population. Understanding the asymptotic behavior of solutions at the blowup time is thus meaningful for the interpretation of the model. Under mild assumptions on the initial data, for n≥3, we show that the final profile satisfies C1|x|-2≤u(x,T)≤C2|x|-2, with convergence in L1 as t→T.This is in sharp contrast with the two-dimensional case, where solutions are known to concentrate to a Dirac mass at the origin (plus an integrable part). We also obtain refined space–time estimates of the form u(x, t) ≤ C(T−t + |x|2)−1 for type I blowup solutions. Previous work had shown that radial, self-similar blowup solutions (which satisfy the above estimates) exist in dimensions n≥3 and do not exist in dimension 2. Our results thus reveal that the final profile displayed by these special solutions actually corresponds to a much more general phenomenon.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N2cbb45fb0c6c4834b63b7cadfc94857b
31 N34d9937c77744b01b5e4ded1e8673766
32 sg:journal.1136216
33 schema:name Blow-up Profiles for the Parabolic–Elliptic Keller–Segel System in Dimensions n≥3
34 schema:pagination 1-17
35 schema:productId N5a7ef046838440efab9750dc3cb5b2a2
36 N793221db1dfe4d52b0ae7a4e5f5617e7
37 Nbec9ca81026a4736b14c8d2088126d6f
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106542395
39 https://doi.org/10.1007/s00220-018-3238-1
40 schema:sdDatePublished 2019-04-11T14:17
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N113dd1c159b2464fac66416e1fb27742
43 schema:url http://link.springer.com/10.1007/s00220-018-3238-1
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N113dd1c159b2464fac66416e1fb27742 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N2cbb45fb0c6c4834b63b7cadfc94857b schema:volumeNumber 367
50 rdf:type schema:PublicationVolume
51 N34d9937c77744b01b5e4ded1e8673766 schema:issueNumber 2
52 rdf:type schema:PublicationIssue
53 N571826673caf4928bd32865d085ed15c rdf:first sg:person.014177276211.41
54 rdf:rest rdf:nil
55 N59dc69ac9d744179ae1f25cfbf3949a1 rdf:first sg:person.015141366665.72
56 rdf:rest N571826673caf4928bd32865d085ed15c
57 N5a7ef046838440efab9750dc3cb5b2a2 schema:name dimensions_id
58 schema:value pub.1106542395
59 rdf:type schema:PropertyValue
60 N793221db1dfe4d52b0ae7a4e5f5617e7 schema:name doi
61 schema:value 10.1007/s00220-018-3238-1
62 rdf:type schema:PropertyValue
63 Nbec9ca81026a4736b14c8d2088126d6f schema:name readcube_id
64 schema:value 83ed6e624fc0c8436c1f484ea994f2d27b5925385d1f7aae718692121a88bfcf
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1136216 schema:issn 0010-3616
73 1432-0916
74 schema:name Communications in Mathematical Physics
75 rdf:type schema:Periodical
76 sg:person.014177276211.41 schema:affiliation https://www.grid.ac/institutes/grid.5659.f
77 schema:familyName Winkler
78 schema:givenName Michael
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014177276211.41
80 rdf:type schema:Person
81 sg:person.015141366665.72 schema:affiliation https://www.grid.ac/institutes/grid.11318.3a
82 schema:familyName Souplet
83 schema:givenName Philippe
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141366665.72
85 rdf:type schema:Person
86 sg:pub.10.1007/3-7643-7385-7_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018147973
87 https://doi.org/10.1007/3-7643-7385-7_28
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf01445268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044525431
90 https://doi.org/10.1007/bf01445268
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00032-003-0026-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005299137
93 https://doi.org/10.1007/s00032-003-0026-x
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s000390050123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029496000
96 https://doi.org/10.1007/s000390050123
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00205-010-0394-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031528274
99 https://doi.org/10.1007/s00205-010-0394-7
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00208-013-1002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004376345
102 https://doi.org/10.1007/s00208-013-1002-6
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0022-0396(89)90131-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020241147
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jde.2010.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033196439
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0294-1449(16)30352-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084044579
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0377-0427(98)00104-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024479441
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1080/03605309208820839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036010547
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/03605309208820896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021028258
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0951-7715/12/4/320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059108865
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0951-7715/17/6/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021285125
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0951-7715/21/5/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059109773
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1090/s0002-9947-1992-1046835-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038252534
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1216/rmjm/1181072494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064431156
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1619/fesi.48.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039148158
127 rdf:type schema:CreativeWork
128 https://doi.org/10.4064/cm-67-2-297-308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092031179
129 rdf:type schema:CreativeWork
130 https://doi.org/10.4064/cm-68-2-229-239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092041969
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.11318.3a schema:alternateName Paris 13 University
133 schema:name Laboratoire Analyse, Géométrie et Applications, CNRS UMR 7539, Université Paris 13, Sorbonne Paris Cité, 93430, Villetaneuse, France
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.5659.f schema:alternateName University of Paderborn
136 schema:name Institut für Mathematik, Universität Paderborn, 33098, Paderborn, Germany
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...