Asymptotics of Hitchin’s Metric on the Hitchin Section View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

David Dumas, Andrew Neitzke

ABSTRACT

We consider Hitchin’s hyperkähler metric g on the moduli space M of degree zero SL(2)-Higgs bundles over a compact Riemann surface. It has been conjectured that, when one goes to infinity along a generic ray in M, g converges to an explicit “semiflat” metric gsf, with an exponential rate of convergence.We show that this is indeed the case for the restriction of g to the tangent bundle of the Hitchin section B⊂M. More... »

PAGES

127-150

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-018-3216-7

DOI

http://dx.doi.org/10.1007/s00220-018-3216-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105810622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Illinois at Chicago", 
          "id": "https://www.grid.ac/institutes/grid.185648.6", 
          "name": [
            "Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumas", 
        "givenName": "David", 
        "id": "sg:person.0731316100.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731316100.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Mathematics, University of Texas at Austin, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neitzke", 
        "givenName": "Andrew", 
        "id": "sg:person.013370625502.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370625502.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00039-015-0344-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002812622", 
          "https://doi.org/10.1007/s00039-015-0344-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00023-013-0239-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023470920", 
          "https://doi.org/10.1007/s00023-013-0239-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2012.09.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031678722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-9383(91)90037-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037084375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1071-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040539415", 
          "https://doi.org/10.1007/s00220-010-1071-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-010-1071-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040539415", 
          "https://doi.org/10.1007/s00220-010-1071-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200050604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040606460", 
          "https://doi.org/10.1007/s002200050604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/s3-55.1.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048378410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-87-05408-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064419356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214447809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459886"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We consider Hitchin\u2019s hyperk\u00e4hler metric g on the moduli space M of degree zero SL(2)-Higgs bundles over a compact Riemann surface. It has been conjectured that, when one goes to infinity along a generic ray in M, g converges to an explicit \u201csemiflat\u201d metric gsf, with an exponential rate of convergence.We show that this is indeed the case for the restriction of g to the tangent bundle of the Hitchin section B\u2282M.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-018-3216-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3125342", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6936059", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3125360", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6936361", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3125327", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "367"
      }
    ], 
    "name": "Asymptotics of Hitchin\u2019s Metric on the Hitchin Section", 
    "pagination": "127-150", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c33e8b59ad7fabcfcaef62dcc50faee9ad0bf7f9464b21108b33cc65d82090dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-018-3216-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105810622"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-018-3216-7", 
      "https://app.dimensions.ai/details/publication/pub.1105810622"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-018-3216-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3216-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3216-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3216-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-018-3216-7'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-018-3216-7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nba3de9f4cd3f42b6ab8b4dee49ba7533
4 schema:citation sg:pub.10.1007/s00023-013-0239-7
5 sg:pub.10.1007/s00039-015-0344-5
6 sg:pub.10.1007/s00220-010-1071-2
7 sg:pub.10.1007/s002200050604
8 https://doi.org/10.1016/0040-9383(91)90037-5
9 https://doi.org/10.1016/j.aim.2012.09.027
10 https://doi.org/10.1112/plms/s3-55.1.59
11 https://doi.org/10.1215/s0012-7094-87-05408-1
12 https://doi.org/10.4310/jdg/1214447809
13 schema:datePublished 2019-04
14 schema:datePublishedReg 2019-04-01
15 schema:description We consider Hitchin’s hyperkähler metric g on the moduli space M of degree zero SL(2)-Higgs bundles over a compact Riemann surface. It has been conjectured that, when one goes to infinity along a generic ray in M, g converges to an explicit “semiflat” metric gsf, with an exponential rate of convergence.We show that this is indeed the case for the restriction of g to the tangent bundle of the Hitchin section B⊂M.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N3f1e0c3272bd4c1bb5bd6ab167069075
20 N51edc089a77346b9b264f3df4e9832e8
21 sg:journal.1136216
22 schema:name Asymptotics of Hitchin’s Metric on the Hitchin Section
23 schema:pagination 127-150
24 schema:productId N12b5bac8d0394653a8cdf9cd98a740b3
25 N3bdfabd2a2e74b49bbb7c4204fad1f8f
26 Nc1a06326754243cfac043265332c118b
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105810622
28 https://doi.org/10.1007/s00220-018-3216-7
29 schema:sdDatePublished 2019-04-11T13:33
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N160a37e9eb574778998a2dbfd60fe23b
32 schema:url https://link.springer.com/10.1007%2Fs00220-018-3216-7
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N12b5bac8d0394653a8cdf9cd98a740b3 schema:name doi
37 schema:value 10.1007/s00220-018-3216-7
38 rdf:type schema:PropertyValue
39 N160a37e9eb574778998a2dbfd60fe23b schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N3bdfabd2a2e74b49bbb7c4204fad1f8f schema:name readcube_id
42 schema:value c33e8b59ad7fabcfcaef62dcc50faee9ad0bf7f9464b21108b33cc65d82090dd
43 rdf:type schema:PropertyValue
44 N3f1e0c3272bd4c1bb5bd6ab167069075 schema:issueNumber 1
45 rdf:type schema:PublicationIssue
46 N51edc089a77346b9b264f3df4e9832e8 schema:volumeNumber 367
47 rdf:type schema:PublicationVolume
48 N5cca37b6e25b42d4b64512620a4f4770 rdf:first sg:person.013370625502.17
49 rdf:rest rdf:nil
50 Nba3de9f4cd3f42b6ab8b4dee49ba7533 rdf:first sg:person.0731316100.73
51 rdf:rest N5cca37b6e25b42d4b64512620a4f4770
52 Nc1a06326754243cfac043265332c118b schema:name dimensions_id
53 schema:value pub.1105810622
54 rdf:type schema:PropertyValue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:grant.3125327 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-018-3216-7
62 rdf:type schema:MonetaryGrant
63 sg:grant.3125342 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-018-3216-7
64 rdf:type schema:MonetaryGrant
65 sg:grant.3125360 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-018-3216-7
66 rdf:type schema:MonetaryGrant
67 sg:grant.6936059 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-018-3216-7
68 rdf:type schema:MonetaryGrant
69 sg:grant.6936361 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-018-3216-7
70 rdf:type schema:MonetaryGrant
71 sg:journal.1136216 schema:issn 0010-3616
72 1432-0916
73 schema:name Communications in Mathematical Physics
74 rdf:type schema:Periodical
75 sg:person.013370625502.17 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
76 schema:familyName Neitzke
77 schema:givenName Andrew
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013370625502.17
79 rdf:type schema:Person
80 sg:person.0731316100.73 schema:affiliation https://www.grid.ac/institutes/grid.185648.6
81 schema:familyName Dumas
82 schema:givenName David
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731316100.73
84 rdf:type schema:Person
85 sg:pub.10.1007/s00023-013-0239-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023470920
86 https://doi.org/10.1007/s00023-013-0239-7
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s00039-015-0344-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002812622
89 https://doi.org/10.1007/s00039-015-0344-5
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00220-010-1071-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040539415
92 https://doi.org/10.1007/s00220-010-1071-2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s002200050604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040606460
95 https://doi.org/10.1007/s002200050604
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0040-9383(91)90037-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037084375
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.aim.2012.09.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031678722
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1112/plms/s3-55.1.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048378410
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1215/s0012-7094-87-05408-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419356
104 rdf:type schema:CreativeWork
105 https://doi.org/10.4310/jdg/1214447809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459886
106 rdf:type schema:CreativeWork
107 https://www.grid.ac/institutes/grid.185648.6 schema:alternateName University of Illinois at Chicago
108 schema:name Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
111 schema:name Department of Mathematics, University of Texas at Austin, Austin, TX, USA
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...