.
"2019-04" .
.
.
.
.
.
"1432-0916" .
.
.
.
.
_:N85d89f770f10441c81591ab0ae695343 .
.
_:N2442ad201c384d42a53e8fe901873535 .
"Gustavo" .
"research_article" .
_:N85d89f770f10441c81591ab0ae695343 .
.
.
.
.
.
.
.
.
.
"true"^^ .
.
_:N7b88b1eba3f24b658d4b153c8797f012 _:N23887709bd6f4751b5f88ecd1e7091ee .
.
"University of California, Santa Barbara" .
.
.
_:N7b88b1eba3f24b658d4b153c8797f012 .
_:N2442ad201c384d42a53e8fe901873535 .
.
.
.
.
.
"University of Chile" .
.
.
.
.
.
.
.
.
.
_:Nb8b9b242795a4947adbd2fa2716027ee .
_:N23887709bd6f4751b5f88ecd1e7091ee .
"CNRS and Departamento de Ingenier\u00EDa Matem\u00E1tica DIM-CMM UMI 2807-CNRS, Universidad de Chile, Santiago, Chile" .
.
.
.
.
.
.
.
_:Nb8b9b242795a4947adbd2fa2716027ee .
.
.
.
.
.
.
"Mathematical Sciences" .
"en" .
.
.
.
_:N85d89f770f10441c81591ab0ae695343 "10.1007/s00220-018-3206-9" .
_:N019d0e128bc146e3a2abd83d4b52a85c .
"In this paper our first aim is to identify a large class of non-linear functions f(\u00B7) for which the IVP for the generalized Korteweg\u2013de Vries equation does not have breathers or \u201Csmall\u201D breathers solutions. Also, we prove that all uniformly in time L1\u2229 H1 bounded solutions to KdV and related \u201Csmall\u201D perturbations must converge to zero, as time goes to infinity, locally in an increasing-in-time region of space of order t1/2 around any compact set in space. This set is included in the linearly dominated dispersive region x\u226A t. Moreover, we prove this result independently of the well-known supercritical character of KdV scattering. In particular, no standing breather-like nor solitary wave structures exists in this particular regime." .
.
.
"Communications in Mathematical Physics" .
.
"Department of Mathematics, University of California-Santa Barbara, 93106, Santa Barbara, CA, USA" .
.
.
.
"Ponce" .
.
.
.
.
.
.
.
"https://link.springer.com/10.1007%2Fs00220-018-3206-9" .
.