A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04

AUTHORS

Nicolas Besse, Uriel Frisch

ABSTRACT

The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy’s Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95–104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499–505, 2014; Podvigina et al. in J Comput Phys 306:320–342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1–51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy–Lagrangian method. More... »

PAGES

689-707

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-016-2816-3

DOI

http://dx.doi.org/10.1007/s00220-016-2816-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016399624


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lagrange Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Laboratoire J.-L. Lagrange, CS 34229, UCA, OCA, CNRS, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Besse", 
        "givenName": "Nicolas", 
        "id": "sg:person.012763067176.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763067176.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lagrange Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462572.0", 
          "name": [
            "Laboratoire J.-L. Lagrange, CS 34229, UCA, OCA, CNRS, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "Uriel", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/(sici)1099-1476(199806)21:9<823::aid-mma976>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000597238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001781675", 
          "https://doi.org/10.1007/bf02790307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01475456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002083496", 
          "https://doi.org/10.1007/bf01475456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01475456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002083496", 
          "https://doi.org/10.1007/bf01475456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.11.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004858025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13163-014-0167-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005609388", 
          "https://doi.org/10.1007/s13163-014-0167-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anihpc.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009362483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anihpc.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009362483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anihpc.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009362483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjh/e2014-50016-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014967498", 
          "https://doi.org/10.1140/epjh/e2014-50016-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2009.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016619568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-35147-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017596592", 
          "https://doi.org/10.1007/978-3-662-35147-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-35147-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017596592", 
          "https://doi.org/10.1007/978-3-662-35147-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605308508820415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018318356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-007-9307-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018377725", 
          "https://doi.org/10.1007/s10955-007-9307-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022374482", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-8134-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022374482", 
          "https://doi.org/10.1007/978-0-8176-8134-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-8134-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022374482", 
          "https://doi.org/10.1007/978-0-8176-8134-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13398-014-0216-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022952671", 
          "https://doi.org/10.1007/s13398-014-0216-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1023597288", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61623-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023597288", 
          "https://doi.org/10.1007/978-3-642-61623-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61623-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023597288", 
          "https://doi.org/10.1007/978-3-642-61623-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.exmath.2007.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028773587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01216794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030818461", 
          "https://doi.org/10.1007/bf01216794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01216794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030818461", 
          "https://doi.org/10.1007/bf01216794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-247x(03)00135-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032190280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-247x(03)00135-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032190280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-247x(86)80009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036156893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/24/3/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040264643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2011.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041605132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-96-01501-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041910601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1996.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043582924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(74)90027-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044433914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(02)00135-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045576168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02780991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046680142", 
          "https://doi.org/10.1007/bf02780991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02780991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046680142", 
          "https://doi.org/10.1007/bf02780991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-013-1848-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252255", 
          "https://doi.org/10.1007/s00220-013-1848-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2015.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052551458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2015.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052551458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2015.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052551458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2015.05.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052551458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053918269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053918269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-08-09693-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059332074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/stv1365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059916606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcds.2011.29.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071734216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcds.2011.29.285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071734216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcdss.2010.3.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071737668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2015.182.1.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm224-2-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072185485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/lem/60-3/4-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072318905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073138109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.2159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/263/04194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089204555"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy\u2019s Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is H\u00f6lder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95\u2013104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499\u2013505, 2014; Podvigina et al. in J Comput Phys 306:320\u2013342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci \u00c9c Norm Sup 45:1\u201351, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy\u2013Lagrangian method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-016-2816-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "351"
      }
    ], 
    "name": "A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain", 
    "pagination": "689-707", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4e235024ad5e4ab52ce6b11c94ab19b4e4e7acdd7917f54f285266620e67554c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-016-2816-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016399624"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-016-2816-3", 
      "https://app.dimensions.ai/details/publication/pub.1016399624"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00220-016-2816-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-016-2816-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-016-2816-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-016-2816-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-016-2816-3'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-016-2816-3 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N83bc2a55250d4971ac6c92565610a3bc
4 schema:citation sg:pub.10.1007/978-0-8176-8134-0
5 sg:pub.10.1007/978-3-642-61623-5
6 sg:pub.10.1007/978-3-662-35147-5
7 sg:pub.10.1007/bf01216794
8 sg:pub.10.1007/bf01475456
9 sg:pub.10.1007/bf02780991
10 sg:pub.10.1007/bf02790307
11 sg:pub.10.1007/s00220-013-1848-1
12 sg:pub.10.1007/s10955-007-9307-z
13 sg:pub.10.1007/s13163-014-0167-1
14 sg:pub.10.1007/s13398-014-0216-0
15 sg:pub.10.1140/epjh/e2014-50016-6
16 https://app.dimensions.ai/details/publication/pub.1022374482
17 https://app.dimensions.ai/details/publication/pub.1023597288
18 https://doi.org/10.1002/(sici)1099-1476(199806)21:9<823::aid-mma976>3.0.co;2-b
19 https://doi.org/10.1006/jdeq.1996.3200
20 https://doi.org/10.1016/0022-1236(74)90027-5
21 https://doi.org/10.1016/j.aim.2015.05.019
22 https://doi.org/10.1016/j.anihpc.2015.07.002
23 https://doi.org/10.1016/j.exmath.2007.04.001
24 https://doi.org/10.1016/j.jcp.2015.11.045
25 https://doi.org/10.1016/j.jfa.2009.03.003
26 https://doi.org/10.1016/j.jfa.2011.05.019
27 https://doi.org/10.1016/s0022-247x(03)00135-5
28 https://doi.org/10.1016/s0022-247x(86)80009-9
29 https://doi.org/10.1016/s0370-1573(02)00135-7
30 https://doi.org/10.1017/jfm.2014.221
31 https://doi.org/10.1080/03605308508820415
32 https://doi.org/10.1088/0951-7715/24/3/004
33 https://doi.org/10.1090/conm/263/04194
34 https://doi.org/10.1090/s0002-9939-08-09693-7
35 https://doi.org/10.1090/s0002-9947-96-01501-2
36 https://doi.org/10.1093/mnras/stv1365
37 https://doi.org/10.2307/1970699
38 https://doi.org/10.24033/asens.2159
39 https://doi.org/10.3934/dcds.2011.29.285
40 https://doi.org/10.3934/dcdss.2010.3.185
41 https://doi.org/10.4007/annals.2015.182.1.3
42 https://doi.org/10.4064/sm224-2-1
43 https://doi.org/10.4171/lem/60-3/4-9
44 https://doi.org/10.5802/aif.1441
45 https://doi.org/10.5802/aif.233
46 schema:datePublished 2017-04
47 schema:datePublishedReg 2017-04-01
48 schema:description The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy’s Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95–104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499–505, 2014; Podvigina et al. in J Comput Phys 306:320–342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1–51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy–Lagrangian method.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf Nc1399c765aff4d808a28a6b8f8bec999
53 Nef99e349728e4a5c875f6815b6bda883
54 sg:journal.1136216
55 schema:name A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain
56 schema:pagination 689-707
57 schema:productId N38aacc8ae4c44f07b9d48477ed077ecf
58 N3b268624ace54862a2e34ff3957b7780
59 N6240660fe0aa49388d6b4fa268ff2db0
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016399624
61 https://doi.org/10.1007/s00220-016-2816-3
62 schema:sdDatePublished 2019-04-11T09:55
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ndfaa8d85c1df427091df2d6fe83b6500
65 schema:url https://link.springer.com/10.1007%2Fs00220-016-2816-3
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N38aacc8ae4c44f07b9d48477ed077ecf schema:name doi
70 schema:value 10.1007/s00220-016-2816-3
71 rdf:type schema:PropertyValue
72 N3b268624ace54862a2e34ff3957b7780 schema:name readcube_id
73 schema:value 4e235024ad5e4ab52ce6b11c94ab19b4e4e7acdd7917f54f285266620e67554c
74 rdf:type schema:PropertyValue
75 N6240660fe0aa49388d6b4fa268ff2db0 schema:name dimensions_id
76 schema:value pub.1016399624
77 rdf:type schema:PropertyValue
78 N83bc2a55250d4971ac6c92565610a3bc rdf:first sg:person.012763067176.22
79 rdf:rest Ne48578a3e1fa465ab0b9b16e8994538e
80 Nc1399c765aff4d808a28a6b8f8bec999 schema:issueNumber 2
81 rdf:type schema:PublicationIssue
82 Ndfaa8d85c1df427091df2d6fe83b6500 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 Ne48578a3e1fa465ab0b9b16e8994538e rdf:first sg:person.011615073661.47
85 rdf:rest rdf:nil
86 Nef99e349728e4a5c875f6815b6bda883 schema:volumeNumber 351
87 rdf:type schema:PublicationVolume
88 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
89 schema:name Engineering
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
92 schema:name Interdisciplinary Engineering
93 rdf:type schema:DefinedTerm
94 sg:journal.1136216 schema:issn 0010-3616
95 1432-0916
96 schema:name Communications in Mathematical Physics
97 rdf:type schema:Periodical
98 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.462572.0
99 schema:familyName Frisch
100 schema:givenName Uriel
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
102 rdf:type schema:Person
103 sg:person.012763067176.22 schema:affiliation https://www.grid.ac/institutes/grid.462572.0
104 schema:familyName Besse
105 schema:givenName Nicolas
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012763067176.22
107 rdf:type schema:Person
108 sg:pub.10.1007/978-0-8176-8134-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022374482
109 https://doi.org/10.1007/978-0-8176-8134-0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/978-3-642-61623-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023597288
112 https://doi.org/10.1007/978-3-642-61623-5
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-662-35147-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017596592
115 https://doi.org/10.1007/978-3-662-35147-5
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf01216794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030818461
118 https://doi.org/10.1007/bf01216794
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01475456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002083496
121 https://doi.org/10.1007/bf01475456
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf02780991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046680142
124 https://doi.org/10.1007/bf02780991
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02790307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001781675
127 https://doi.org/10.1007/bf02790307
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00220-013-1848-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052252255
130 https://doi.org/10.1007/s00220-013-1848-1
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10955-007-9307-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018377725
133 https://doi.org/10.1007/s10955-007-9307-z
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s13163-014-0167-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005609388
136 https://doi.org/10.1007/s13163-014-0167-1
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s13398-014-0216-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022952671
139 https://doi.org/10.1007/s13398-014-0216-0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1140/epjh/e2014-50016-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014967498
142 https://doi.org/10.1140/epjh/e2014-50016-6
143 rdf:type schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1022374482 schema:CreativeWork
145 https://app.dimensions.ai/details/publication/pub.1023597288 schema:CreativeWork
146 https://doi.org/10.1002/(sici)1099-1476(199806)21:9<823::aid-mma976>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1000597238
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1006/jdeq.1996.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043582924
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/0022-1236(74)90027-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044433914
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.aim.2015.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052551458
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.anihpc.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009362483
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.exmath.2007.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028773587
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jcp.2015.11.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004858025
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.jfa.2009.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016619568
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.jfa.2011.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041605132
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0022-247x(03)00135-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032190280
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0022-247x(86)80009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036156893
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0370-1573(02)00135-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045576168
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1017/jfm.2014.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053918269
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1080/03605308508820415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018318356
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0951-7715/24/3/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040264643
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1090/conm/263/04194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089204555
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1090/s0002-9939-08-09693-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059332074
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1090/s0002-9947-96-01501-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041910601
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/mnras/stv1365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059916606
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2307/1970699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676014
185 rdf:type schema:CreativeWork
186 https://doi.org/10.24033/asens.2159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408509
187 rdf:type schema:CreativeWork
188 https://doi.org/10.3934/dcds.2011.29.285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071734216
189 rdf:type schema:CreativeWork
190 https://doi.org/10.3934/dcdss.2010.3.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071737668
191 rdf:type schema:CreativeWork
192 https://doi.org/10.4007/annals.2015.182.1.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867599
193 rdf:type schema:CreativeWork
194 https://doi.org/10.4064/sm224-2-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072185485
195 rdf:type schema:CreativeWork
196 https://doi.org/10.4171/lem/60-3/4-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318905
197 rdf:type schema:CreativeWork
198 https://doi.org/10.5802/aif.1441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137122
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5802/aif.233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073138109
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.462572.0 schema:alternateName Lagrange Laboratory
203 schema:name Laboratoire J.-L. Lagrange, CS 34229, UCA, OCA, CNRS, 06304, Nice Cedex 4, France
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...