Duality Between Spin Networks and the 2D Ising Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-06

AUTHORS

Valentin Bonzom, Francesco Costantino, Etera R. Livine

ABSTRACT

The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity. More... »

PAGES

531-579

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-015-2567-6

DOI

http://dx.doi.org/10.1007/s00220-015-2567-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038995900


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Computer Science Department", 
          "id": "https://www.grid.ac/institutes/grid.462937.d", 
          "name": [
            "LIPN, UMR CNRS 7030, Institut Galil\u00e9e, Universit\u00e9 Paris 13, Sorbonne Paris Cit\u00e9, 99, Avenue Jean-Baptiste Cl\u00e9ment, 93430, Villetaneuse, EU, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonzom", 
        "givenName": "Valentin", 
        "id": "sg:person.0776126335.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toulouse Mathematics Institute", 
          "id": "https://www.grid.ac/institutes/grid.462146.3", 
          "name": [
            "Institut de Math\u00e9matiques de Toulouse, Universit\u00e9 de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costantino", 
        "givenName": "Francesco", 
        "id": "sg:person.013532614735.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532614735.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.249961.1", 
          "name": [
            "Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 All\u00e9e d\u2019Italie, 69007, Lyon, France", 
            "Korea Institute for Advanced Study, 130-722, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Livine", 
        "givenName": "Etera R.", 
        "id": "sg:person.015741067717.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741067717.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00023-011-0127-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000425261", 
          "https://doi.org/10.1007/s00023-011-0127-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001662320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90015-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001662320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3675465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002860588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.084040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003360509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.084040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003360509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4731771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003500864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.124014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004945572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.124014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004945572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-002-0249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006191671", 
          "https://doi.org/10.1007/s00222-002-0249-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.241303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010244675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.241303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010244675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.084041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014429194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.084041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014429194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9927-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015638338", 
          "https://doi.org/10.1007/978-1-4020-9927-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-9927-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015638338", 
          "https://doi.org/10.1007/978-1-4020-9927-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/22/9/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015968428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/21/24/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90173-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018875967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(82)90173-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018875967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.87.104014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020923114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.87.104014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020923114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/78/05/058103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022895546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/50/505402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028177690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/50/505402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028177690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1477-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037379751", 
          "https://doi.org/10.1007/s00220-012-1477-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3587121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038309734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2010/07/p07023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040433774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/28/19/195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042623690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-007-0302-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043133033", 
          "https://doi.org/10.1007/s00220-007-0302-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-007-0302-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043133033", 
          "https://doi.org/10.1007/s00220-007-0302-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2009.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043332861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10711-015-0086-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045797832", 
          "https://doi.org/10.1007/s10711-015-0086-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0920-5632(91)90125-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045831564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0920-5632(91)90125-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045831564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4830008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047199017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11005-009-0299-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048598083", 
          "https://doi.org/10.1007/s11005-009-0299-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1703953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057773895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.524404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058101424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/11/12/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059064464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.49.1062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.34.829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/gt.2007.11.1831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069060121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/aihpd/32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072316182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072318182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/qt/41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/-42-1-447-456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092040778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400884186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096910996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511622779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700883"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-015-2567-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "344"
      }
    ], 
    "name": "Duality Between Spin Networks and the 2D Ising Model", 
    "pagination": "531-579", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9c166f37263e13dd0e1aae091b29a2ebf0a5fd82ad8b1611a1d3a7e5cfadd22"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-015-2567-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038995900"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-015-2567-6", 
      "https://app.dimensions.ai/details/publication/pub.1038995900"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-015-2567-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2567-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2567-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2567-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2567-6'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-015-2567-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2a85eef277cf4c13ba5695def62abf67
4 schema:citation sg:pub.10.1007/978-1-4020-9927-4_14
5 sg:pub.10.1007/s00023-011-0127-y
6 sg:pub.10.1007/s00220-007-0302-7
7 sg:pub.10.1007/s00220-012-1477-0
8 sg:pub.10.1007/s00222-002-0249-4
9 sg:pub.10.1007/s10711-015-0086-4
10 sg:pub.10.1007/s11005-009-0299-2
11 https://doi.org/10.1016/0550-3213(82)90173-0
12 https://doi.org/10.1016/0550-3213(89)90015-1
13 https://doi.org/10.1016/0920-5632(91)90125-x
14 https://doi.org/10.1016/j.nuclphysb.2009.10.016
15 https://doi.org/10.1017/cbo9780511622779
16 https://doi.org/10.1063/1.1703953
17 https://doi.org/10.1063/1.3587121
18 https://doi.org/10.1063/1.3675465
19 https://doi.org/10.1063/1.4731771
20 https://doi.org/10.1063/1.4830008
21 https://doi.org/10.1063/1.524404
22 https://doi.org/10.1088/0031-8949/78/05/058103
23 https://doi.org/10.1088/0264-9381/21/24/002
24 https://doi.org/10.1088/0264-9381/22/9/017
25 https://doi.org/10.1088/0264-9381/28/19/195006
26 https://doi.org/10.1088/0305-4470/11/12/012
27 https://doi.org/10.1088/1742-5468/2010/07/p07023
28 https://doi.org/10.1088/1751-8113/43/50/505402
29 https://doi.org/10.1103/physrevd.82.084040
30 https://doi.org/10.1103/physrevd.82.084041
31 https://doi.org/10.1103/physrevd.87.104014
32 https://doi.org/10.1103/physrevd.92.124014
33 https://doi.org/10.1103/physrevlett.108.241303
34 https://doi.org/10.1103/physrevlett.49.1062
35 https://doi.org/10.1103/revmodphys.34.829
36 https://doi.org/10.1515/9781400884186
37 https://doi.org/10.2140/gt.2007.11.1831
38 https://doi.org/10.4064/-42-1-447-456
39 https://doi.org/10.4171/aihpd/32
40 https://doi.org/10.4171/jems/561
41 https://doi.org/10.4171/qt/41
42 schema:datePublished 2016-06
43 schema:datePublishedReg 2016-06-01
44 schema:description The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N207aeb406a7e41a9b2cc3c6ce2ff6e96
49 N9c46fd977b464ee08bc0aee3a4bfcf4c
50 sg:journal.1136216
51 schema:name Duality Between Spin Networks and the 2D Ising Model
52 schema:pagination 531-579
53 schema:productId N30c496acd2384984a5ab36afb149f4b7
54 N81f5ec76449c4934b72894e15d7a3c95
55 Ncd793f24661d409a8412498564574fef
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038995900
57 https://doi.org/10.1007/s00220-015-2567-6
58 schema:sdDatePublished 2019-04-10T13:17
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N6af5700163124a83b8e628cf2a312efd
61 schema:url http://link.springer.com/10.1007%2Fs00220-015-2567-6
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N207aeb406a7e41a9b2cc3c6ce2ff6e96 schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N2a85eef277cf4c13ba5695def62abf67 rdf:first sg:person.0776126335.37
68 rdf:rest N9cdeed9461854af9a430d39b1eef9e6a
69 N30c496acd2384984a5ab36afb149f4b7 schema:name dimensions_id
70 schema:value pub.1038995900
71 rdf:type schema:PropertyValue
72 N6af5700163124a83b8e628cf2a312efd schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N70684ec417af403e99d40c9a649e65c1 rdf:first sg:person.015741067717.38
75 rdf:rest rdf:nil
76 N81f5ec76449c4934b72894e15d7a3c95 schema:name doi
77 schema:value 10.1007/s00220-015-2567-6
78 rdf:type schema:PropertyValue
79 N9c46fd977b464ee08bc0aee3a4bfcf4c schema:volumeNumber 344
80 rdf:type schema:PublicationVolume
81 N9cdeed9461854af9a430d39b1eef9e6a rdf:first sg:person.013532614735.24
82 rdf:rest N70684ec417af403e99d40c9a649e65c1
83 Ncd793f24661d409a8412498564574fef schema:name readcube_id
84 schema:value b9c166f37263e13dd0e1aae091b29a2ebf0a5fd82ad8b1611a1d3a7e5cfadd22
85 rdf:type schema:PropertyValue
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:journal.1136216 schema:issn 0010-3616
93 1432-0916
94 schema:name Communications in Mathematical Physics
95 rdf:type schema:Periodical
96 sg:person.013532614735.24 schema:affiliation https://www.grid.ac/institutes/grid.462146.3
97 schema:familyName Costantino
98 schema:givenName Francesco
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532614735.24
100 rdf:type schema:Person
101 sg:person.015741067717.38 schema:affiliation https://www.grid.ac/institutes/grid.249961.1
102 schema:familyName Livine
103 schema:givenName Etera R.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741067717.38
105 rdf:type schema:Person
106 sg:person.0776126335.37 schema:affiliation https://www.grid.ac/institutes/grid.462937.d
107 schema:familyName Bonzom
108 schema:givenName Valentin
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-4020-9927-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015638338
112 https://doi.org/10.1007/978-1-4020-9927-4_14
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00023-011-0127-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000425261
115 https://doi.org/10.1007/s00023-011-0127-y
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00220-007-0302-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043133033
118 https://doi.org/10.1007/s00220-007-0302-7
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00220-012-1477-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037379751
121 https://doi.org/10.1007/s00220-012-1477-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s00222-002-0249-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006191671
124 https://doi.org/10.1007/s00222-002-0249-4
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10711-015-0086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045797832
127 https://doi.org/10.1007/s10711-015-0086-4
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11005-009-0299-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048598083
130 https://doi.org/10.1007/s11005-009-0299-2
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0550-3213(82)90173-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018875967
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0550-3213(89)90015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001662320
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0920-5632(91)90125-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045831564
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.nuclphysb.2009.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043332861
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1017/cbo9780511622779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700883
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.1703953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057773895
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.3587121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038309734
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.3675465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002860588
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.4731771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003500864
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.4830008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047199017
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.524404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058101424
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0031-8949/78/05/058103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022895546
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1088/0264-9381/21/24/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569339
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/0264-9381/22/9/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015968428
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0264-9381/28/19/195006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042623690
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0305-4470/11/12/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064464
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1088/1742-5468/2010/07/p07023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040433774
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/1751-8113/43/50/505402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028177690
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevd.82.084040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003360509
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevd.82.084041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014429194
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevd.87.104014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020923114
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevd.92.124014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004945572
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.108.241303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010244675
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.49.1062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787545
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/revmodphys.34.829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838119
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1515/9781400884186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096910996
183 rdf:type schema:CreativeWork
184 https://doi.org/10.2140/gt.2007.11.1831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069060121
185 rdf:type schema:CreativeWork
186 https://doi.org/10.4064/-42-1-447-456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092040778
187 rdf:type schema:CreativeWork
188 https://doi.org/10.4171/aihpd/32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072316182
189 rdf:type schema:CreativeWork
190 https://doi.org/10.4171/jems/561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072318182
191 rdf:type schema:CreativeWork
192 https://doi.org/10.4171/qt/41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320020
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.249961.1 schema:alternateName Korea Institute for Advanced Study
195 schema:name Korea Institute for Advanced Study, 130-722, Seoul, Korea
196 Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allée d’Italie, 69007, Lyon, France
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.462146.3 schema:alternateName Toulouse Mathematics Institute
199 schema:name Institut de Mathématiques de Toulouse, Université de Toulouse III Paul Sabatier, 118 route de Narbonne, 31062, Toulouse, France
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.462937.d schema:alternateName Computer Science Department
202 schema:name LIPN, UMR CNRS 7030, Institut Galilée, Université Paris 13, Sorbonne Paris Cité, 99, Avenue Jean-Baptiste Clément, 93430, Villetaneuse, EU, France
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...