Scalar Field Theories with Polynomial Shift Symmetries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Tom Griffin, Kevin T. Grosvenor, Petr Hořava, Ziqi Yan

ABSTRACT

We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu–Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These “polynomial shift symmetries” in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness. More... »

PAGES

985-1048

References to SciGraph publications

  • 2013-02. Non-relativistic holography from Hořava gravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-06. Galileons as Wess-Zumino terms in JOURNAL OF HIGH ENERGY PHYSICS
  • 1975-11. Inverse Higgs effect in nonlinear realizations in THEORETICAL AND MATHEMATICAL PHYSICS
  • 1973-12. There are no Goldstone bosons in two dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1980. Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking in RECENT DEVELOPMENTS IN GAUGE THEORIES
  • 2011-05. Anisotropic conformal infinity in GENERAL RELATIVITY AND GRAVITATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-015-2461-2

    DOI

    http://dx.doi.org/10.1007/s00220-015-2461-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048520472


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Imperial College London", 
              "id": "https://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Blackett Laboratory, Department of Physics, Imperial College, SW7 2AZ, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Griffin", 
            "givenName": "Tom", 
            "id": "sg:person.01306410676.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306410676.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lawrence Berkeley National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Berkeley Center for Theoretical Physics and Department of Physics, University of California, 94720-7300, Berkeley, CA, USA", 
                "Theoretical Physics Group, Lawrence Berkeley National Laboratory, 94720-8162, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grosvenor", 
            "givenName": "Kevin T.", 
            "id": "sg:person.012442562265.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442562265.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lawrence Berkeley National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Berkeley Center for Theoretical Physics and Department of Physics, University of California, 94720-7300, Berkeley, CA, USA", 
                "Theoretical Physics Group, Lawrence Berkeley National Laboratory, 94720-8162, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ho\u0159ava", 
            "givenName": "Petr", 
            "id": "sg:person.0631440304.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631440304.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lawrence Berkeley National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Berkeley Center for Theoretical Physics and Department of Physics, University of California, 94720-7300, Berkeley, CA, USA", 
                "Theoretical Physics Group, Lawrence Berkeley National Laboratory, 94720-8162, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Ziqi", 
            "id": "sg:person.0640110455.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640110455.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.110.081602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002484703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.081602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002484703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.085004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003318398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.89.085004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003318398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.101701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007372248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.88.101701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007372248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.044027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007435158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.85.044027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007435158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007995263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.064036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007995263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2010.05.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008601895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-7571-5_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011455159", 
              "https://doi.org/10.1007/978-1-4684-7571-5_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/28/11/114012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012140720"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10714-010-1117-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016107422", 
              "https://doi.org/10.1007/s10714-010-1117-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01028947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021552075", 
              "https://doi.org/10.1007/bf01028947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.82.064027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028536708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.82.064027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028536708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.106005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.106005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033182093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.251602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033361419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.108.251602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033361419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/22/223101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038375138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/22/223101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038375138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.084008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038576404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.084008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038576404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01646487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042039079", 
              "https://doi.org/10.1007/bf01646487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01646487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042039079", 
              "https://doi.org/10.1007/bf01646487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01646487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042039079", 
              "https://doi.org/10.1007/bf01646487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2012)004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043255007", 
              "https://doi.org/10.1007/jhep06(2012)004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2013)123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043448735", 
              "https://doi.org/10.1007/jhep02(2013)123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.031057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049011368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.4.031057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049011368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.081601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053345192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.110.081601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053345192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.158.383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.158.383", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060435582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.2239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.2239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.2247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.177.2247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060440427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.17.1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060769116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.17.1133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060769116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218271814430019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062969683"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-12", 
        "datePublishedReg": "2015-12-01", 
        "description": "We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu\u2013Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These \u201cpolynomial shift symmetries\u201d in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00220-015-2461-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "340"
          }
        ], 
        "name": "Scalar Field Theories with Polynomial Shift Symmetries", 
        "pagination": "985-1048", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e724cb402081893d2a410edf402ee614a24fffc5a8628378b8ea0eb50e225520"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-015-2461-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048520472"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-015-2461-2", 
          "https://app.dimensions.ai/details/publication/pub.1048520472"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00220-015-2461-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2461-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2461-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2461-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-015-2461-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    167 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-015-2461-2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na3d618fd41d44af5a61bece9e789a453
    4 schema:citation sg:pub.10.1007/978-1-4684-7571-5_9
    5 sg:pub.10.1007/bf01028947
    6 sg:pub.10.1007/bf01646487
    7 sg:pub.10.1007/jhep02(2013)123
    8 sg:pub.10.1007/jhep06(2012)004
    9 sg:pub.10.1007/s10714-010-1117-y
    10 https://doi.org/10.1016/j.physletb.2010.05.054
    11 https://doi.org/10.1088/0264-9381/27/22/223101
    12 https://doi.org/10.1088/0264-9381/28/11/114012
    13 https://doi.org/10.1103/physrev.158.383
    14 https://doi.org/10.1103/physrev.177.2239
    15 https://doi.org/10.1103/physrev.177.2247
    16 https://doi.org/10.1103/physrevd.78.106005
    17 https://doi.org/10.1103/physrevd.79.064036
    18 https://doi.org/10.1103/physrevd.79.084008
    19 https://doi.org/10.1103/physrevd.82.064027
    20 https://doi.org/10.1103/physrevd.85.044027
    21 https://doi.org/10.1103/physrevd.88.101701
    22 https://doi.org/10.1103/physrevd.89.085004
    23 https://doi.org/10.1103/physrevlett.108.251602
    24 https://doi.org/10.1103/physrevlett.110.081601
    25 https://doi.org/10.1103/physrevlett.110.081602
    26 https://doi.org/10.1103/physrevlett.17.1133
    27 https://doi.org/10.1103/physrevx.4.031057
    28 https://doi.org/10.1142/s0218271814430019
    29 schema:datePublished 2015-12
    30 schema:datePublishedReg 2015-12-01
    31 schema:description We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu–Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These “polynomial shift symmetries” in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf Na417be72edbb454a928db26b89a49879
    36 Nb7051ce68a044de3906f4755687a9a76
    37 sg:journal.1136216
    38 schema:name Scalar Field Theories with Polynomial Shift Symmetries
    39 schema:pagination 985-1048
    40 schema:productId N030d7ce324d74abdbbbdb9c2ff0667c5
    41 N4f24f81216d74b50b699fc13a55fdf34
    42 N7d1c38f144264a9c886d5f50610612a3
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048520472
    44 https://doi.org/10.1007/s00220-015-2461-2
    45 schema:sdDatePublished 2019-04-10T20:48
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N0be07231ec29474f856f1211982597ca
    48 schema:url http://link.springer.com/10.1007%2Fs00220-015-2461-2
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N030d7ce324d74abdbbbdb9c2ff0667c5 schema:name dimensions_id
    53 schema:value pub.1048520472
    54 rdf:type schema:PropertyValue
    55 N0be07231ec29474f856f1211982597ca schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N4f24f81216d74b50b699fc13a55fdf34 schema:name doi
    58 schema:value 10.1007/s00220-015-2461-2
    59 rdf:type schema:PropertyValue
    60 N5fca2934c3e74a95a68126c888ef8dee rdf:first sg:person.012442562265.65
    61 rdf:rest Nd92dc5824c1d41eea52b39fd5998310f
    62 N7448d0ad07944d99b3110dfcc1fddbfa rdf:first sg:person.0640110455.47
    63 rdf:rest rdf:nil
    64 N7d1c38f144264a9c886d5f50610612a3 schema:name readcube_id
    65 schema:value e724cb402081893d2a410edf402ee614a24fffc5a8628378b8ea0eb50e225520
    66 rdf:type schema:PropertyValue
    67 Na3d618fd41d44af5a61bece9e789a453 rdf:first sg:person.01306410676.38
    68 rdf:rest N5fca2934c3e74a95a68126c888ef8dee
    69 Na417be72edbb454a928db26b89a49879 schema:issueNumber 3
    70 rdf:type schema:PublicationIssue
    71 Nb7051ce68a044de3906f4755687a9a76 schema:volumeNumber 340
    72 rdf:type schema:PublicationVolume
    73 Nd92dc5824c1d41eea52b39fd5998310f rdf:first sg:person.0631440304.26
    74 rdf:rest N7448d0ad07944d99b3110dfcc1fddbfa
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Pure Mathematics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1136216 schema:issn 0010-3616
    82 1432-0916
    83 schema:name Communications in Mathematical Physics
    84 rdf:type schema:Periodical
    85 sg:person.012442562265.65 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
    86 schema:familyName Grosvenor
    87 schema:givenName Kevin T.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442562265.65
    89 rdf:type schema:Person
    90 sg:person.01306410676.38 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
    91 schema:familyName Griffin
    92 schema:givenName Tom
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306410676.38
    94 rdf:type schema:Person
    95 sg:person.0631440304.26 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
    96 schema:familyName Hořava
    97 schema:givenName Petr
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631440304.26
    99 rdf:type schema:Person
    100 sg:person.0640110455.47 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
    101 schema:familyName Yan
    102 schema:givenName Ziqi
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640110455.47
    104 rdf:type schema:Person
    105 sg:pub.10.1007/978-1-4684-7571-5_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011455159
    106 https://doi.org/10.1007/978-1-4684-7571-5_9
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01028947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021552075
    109 https://doi.org/10.1007/bf01028947
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf01646487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042039079
    112 https://doi.org/10.1007/bf01646487
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/jhep02(2013)123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043448735
    115 https://doi.org/10.1007/jhep02(2013)123
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/jhep06(2012)004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043255007
    118 https://doi.org/10.1007/jhep06(2012)004
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10714-010-1117-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016107422
    121 https://doi.org/10.1007/s10714-010-1117-y
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1016/j.physletb.2010.05.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008601895
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1088/0264-9381/27/22/223101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038375138
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1088/0264-9381/28/11/114012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012140720
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrev.158.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060435582
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrev.177.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440426
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrev.177.2247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440427
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevd.78.106005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033182093
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevd.79.064036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007995263
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevd.79.084008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038576404
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevd.82.064027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028536708
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevd.85.044027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007435158
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevd.88.101701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007372248
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevd.89.085004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003318398
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevlett.108.251602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033361419
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevlett.110.081601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053345192
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevlett.110.081602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002484703
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevx.4.031057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049011368
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1142/s0218271814430019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062969683
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
    162 schema:name Berkeley Center for Theoretical Physics and Department of Physics, University of California, 94720-7300, Berkeley, CA, USA
    163 Theoretical Physics Group, Lawrence Berkeley National Laboratory, 94720-8162, Berkeley, CA, USA
    164 rdf:type schema:Organization
    165 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
    166 schema:name Blackett Laboratory, Department of Physics, Imperial College, SW7 2AZ, London, UK
    167 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...