Elliptic Genera of 2d N = 2 Gauge Theories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-11-02

AUTHORS

Francesco Benini, Richard Eager, Kentaro Hori, Yuji Tachikawa

ABSTRACT

We compute the elliptic genera of general two-dimensional N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} and N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} gauge theories. We find that the elliptic genus is given by the sum of Jeffrey–Kirwan residues of a meromorphic form, representing the one-loop determinant of fields, on the moduli space of flat connections on T2. We give several examples illustrating our formula, with both Abelian and non-Abelian gauge groups, and discuss some dualities for U(k) and SU(k) theories. This paper is a sequel to the authors’ previous paper (Benini et al., Lett Math Phys 104:465–493, 2014). More... »

PAGES

1241-1286

References to SciGraph publications

  • 2016-11-13. Fivebranes and 4-Manifolds in ARBEITSTAGUNG BONN 2013
  • 2013-10-21. Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-01-12. Two-Sphere Partition Functions and Gromov–Witten Invariants in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2014-03-17. 2d index and surface operators in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-06-03. Two-dimensional SCFTs from wrapped branes and c-extremization in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-07-17. Partition Functions of N=(2,2) Gauge Theories on S2 and Vortices in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2012-11-29. Nonabelian 2D gauge theories for determinantal Calabi-Yau varieties in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-10-17. Comments on 3d Seiberg-like dualities in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-05-25. Aspects of non-abelian gauge dynamics in two-dimensional 𝒩 = (2,2) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-12-01. Toric reduction and a conjecture of Batyrev and Materov in INVENTIONES MATHEMATICAE
  • 2014-05-12. Walls, lines, and spectral dualities in 3d gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-05-17. Exact results in D = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2000-06. The Pfaffian Calabi–Yau, its Mirror, and their Link to the Grassmannian G(2,7) in COMPOSITIO MATHEMATICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-014-2210-y

    DOI

    http://dx.doi.org/10.1007/s00220-014-2210-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037293419


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.36425.36", 
              "name": [
                "Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benini", 
            "givenName": "Francesco", 
            "id": "sg:person.011505670225.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eager", 
            "givenName": "Richard", 
            "id": "sg:person.010047477352.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047477352.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hori", 
            "givenName": "Kentaro", 
            "id": "sg:person.012240020752.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240020752.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tachikawa", 
            "givenName": "Yuji", 
            "id": "sg:person.010520672276.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep10(2011)075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000059597", 
              "https://doi.org/10.1007/jhep10(2011)075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051586061", 
              "https://doi.org/10.1007/jhep06(2013)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2112-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007928508", 
              "https://doi.org/10.1007/s00220-014-2112-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1001847914402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012744203", 
              "https://doi.org/10.1023/a:1001847914402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-004-0375-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008524964", 
              "https://doi.org/10.1007/s00222-004-0375-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2013)093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004670263", 
              "https://doi.org/10.1007/jhep05(2013)093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1874-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014849050", 
              "https://doi.org/10.1007/s00220-013-1874-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-43648-7_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045481204", 
              "https://doi.org/10.1007/978-3-319-43648-7_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2012)166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000065736", 
              "https://doi.org/10.1007/jhep11(2012)166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2014)080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028765881", 
              "https://doi.org/10.1007/jhep03(2014)080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/05/079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005771754", 
              "https://doi.org/10.1088/1126-6708/2007/05/079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025485605", 
              "https://doi.org/10.1007/jhep10(2013)121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2014)047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017338713", 
              "https://doi.org/10.1007/jhep05(2014)047"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-11-02", 
        "datePublishedReg": "2014-11-02", 
        "description": "We compute the elliptic genera of general two-dimensional N=(2,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (2, 2)}$$\\end{document} and N=(0,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (0, 2)}$$\\end{document} gauge theories. We find that the elliptic genus is given by the sum of Jeffrey\u2013Kirwan residues of a meromorphic form, representing the one-loop determinant of fields, on the moduli space of flat connections on T2. We give several examples illustrating our formula, with both Abelian and non-Abelian gauge groups, and discuss some dualities for U(k) and SU(k) theories. This paper is a sequel to the authors\u2019 previous paper (Benini et\u00a0al., Lett Math Phys 104:465\u2013493, 2014).", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00220-014-2210-y", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "333"
          }
        ], 
        "keywords": [
          "elliptic genus", 
          "gauge theory", 
          "one-loop determinant", 
          "non-Abelian gauge group", 
          "meromorphic form", 
          "moduli space", 
          "flat connections", 
          "gauge group", 
          "previous paper", 
          "author's previous paper", 
          "theory", 
          "Jeffrey\u2013Kirwan residue", 
          "formula", 
          "duality", 
          "sum", 
          "field", 
          "space", 
          "connection", 
          "sequel", 
          "form", 
          "T2", 
          "group", 
          "determinants", 
          "example", 
          "paper", 
          "genus", 
          "residues"
        ], 
        "name": "Elliptic Genera of 2d N = 2 Gauge Theories", 
        "pagination": "1241-1286", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037293419"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-014-2210-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-014-2210-y", 
          "https://app.dimensions.ai/details/publication/pub.1037293419"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_640.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00220-014-2210-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2210-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2210-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2210-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2210-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      64 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-014-2210-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N9edd8f8577734a97a0459b0f67df5e8c
    4 schema:citation sg:pub.10.1007/978-3-319-43648-7_7
    5 sg:pub.10.1007/jhep03(2014)080
    6 sg:pub.10.1007/jhep05(2013)093
    7 sg:pub.10.1007/jhep05(2014)047
    8 sg:pub.10.1007/jhep06(2013)005
    9 sg:pub.10.1007/jhep10(2011)075
    10 sg:pub.10.1007/jhep10(2013)121
    11 sg:pub.10.1007/jhep11(2012)166
    12 sg:pub.10.1007/s00220-013-1874-z
    13 sg:pub.10.1007/s00220-014-2112-z
    14 sg:pub.10.1007/s00222-004-0375-2
    15 sg:pub.10.1023/a:1001847914402
    16 sg:pub.10.1088/1126-6708/2007/05/079
    17 schema:datePublished 2014-11-02
    18 schema:datePublishedReg 2014-11-02
    19 schema:description We compute the elliptic genera of general two-dimensional N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} and N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} gauge theories. We find that the elliptic genus is given by the sum of Jeffrey–Kirwan residues of a meromorphic form, representing the one-loop determinant of fields, on the moduli space of flat connections on T2. We give several examples illustrating our formula, with both Abelian and non-Abelian gauge groups, and discuss some dualities for U(k) and SU(k) theories. This paper is a sequel to the authors’ previous paper (Benini et al., Lett Math Phys 104:465–493, 2014).
    20 schema:genre article
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N3d59901386b14cd9ac1d3007f8a9591f
    23 N667e311bb0f047078d86c511b3687b72
    24 sg:journal.1136216
    25 schema:keywords Jeffrey–Kirwan residue
    26 T2
    27 author's previous paper
    28 connection
    29 determinants
    30 duality
    31 elliptic genus
    32 example
    33 field
    34 flat connections
    35 form
    36 formula
    37 gauge group
    38 gauge theory
    39 genus
    40 group
    41 meromorphic form
    42 moduli space
    43 non-Abelian gauge group
    44 one-loop determinant
    45 paper
    46 previous paper
    47 residues
    48 sequel
    49 space
    50 sum
    51 theory
    52 schema:name Elliptic Genera of 2d N = 2 Gauge Theories
    53 schema:pagination 1241-1286
    54 schema:productId N82bc6b45490c4b4cbe4d1af89c55a71f
    55 N9456078fa43242368a5fca075b36a97a
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037293419
    57 https://doi.org/10.1007/s00220-014-2210-y
    58 schema:sdDatePublished 2022-12-01T06:32
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher Nc28cd4820d5a456b933284828c7065d5
    61 schema:url https://doi.org/10.1007/s00220-014-2210-y
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N0ae36aabc3714c979e25ffef167e661c rdf:first sg:person.010520672276.19
    66 rdf:rest rdf:nil
    67 N3d59901386b14cd9ac1d3007f8a9591f schema:volumeNumber 333
    68 rdf:type schema:PublicationVolume
    69 N667e311bb0f047078d86c511b3687b72 schema:issueNumber 3
    70 rdf:type schema:PublicationIssue
    71 N82bc6b45490c4b4cbe4d1af89c55a71f schema:name dimensions_id
    72 schema:value pub.1037293419
    73 rdf:type schema:PropertyValue
    74 N8e1efa278d1c46fda4488d0989458322 rdf:first sg:person.012240020752.09
    75 rdf:rest N0ae36aabc3714c979e25ffef167e661c
    76 N9456078fa43242368a5fca075b36a97a schema:name doi
    77 schema:value 10.1007/s00220-014-2210-y
    78 rdf:type schema:PropertyValue
    79 N9edd8f8577734a97a0459b0f67df5e8c rdf:first sg:person.011505670225.30
    80 rdf:rest Ne1b51d3ce84c407ca20a0e64a50560f8
    81 Nc28cd4820d5a456b933284828c7065d5 schema:name Springer Nature - SN SciGraph project
    82 rdf:type schema:Organization
    83 Ne1b51d3ce84c407ca20a0e64a50560f8 rdf:first sg:person.010047477352.47
    84 rdf:rest N8e1efa278d1c46fda4488d0989458322
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Pure Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1136216 schema:issn 0010-3616
    92 1432-0916
    93 schema:name Communications in Mathematical Physics
    94 schema:publisher Springer Nature
    95 rdf:type schema:Periodical
    96 sg:person.010047477352.47 schema:affiliation grid-institutes:grid.440880.0
    97 schema:familyName Eager
    98 schema:givenName Richard
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047477352.47
    100 rdf:type schema:Person
    101 sg:person.010520672276.19 schema:affiliation grid-institutes:grid.26999.3d
    102 schema:familyName Tachikawa
    103 schema:givenName Yuji
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
    105 rdf:type schema:Person
    106 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.36425.36
    107 schema:familyName Benini
    108 schema:givenName Francesco
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
    110 rdf:type schema:Person
    111 sg:person.012240020752.09 schema:affiliation grid-institutes:grid.440880.0
    112 schema:familyName Hori
    113 schema:givenName Kentaro
    114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240020752.09
    115 rdf:type schema:Person
    116 sg:pub.10.1007/978-3-319-43648-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045481204
    117 https://doi.org/10.1007/978-3-319-43648-7_7
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/jhep03(2014)080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028765881
    120 https://doi.org/10.1007/jhep03(2014)080
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/jhep05(2013)093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004670263
    123 https://doi.org/10.1007/jhep05(2013)093
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/jhep05(2014)047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017338713
    126 https://doi.org/10.1007/jhep05(2014)047
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/jhep06(2013)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051586061
    129 https://doi.org/10.1007/jhep06(2013)005
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/jhep10(2011)075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000059597
    132 https://doi.org/10.1007/jhep10(2011)075
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/jhep10(2013)121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025485605
    135 https://doi.org/10.1007/jhep10(2013)121
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/jhep11(2012)166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000065736
    138 https://doi.org/10.1007/jhep11(2012)166
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s00220-013-1874-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014849050
    141 https://doi.org/10.1007/s00220-013-1874-z
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/s00220-014-2112-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007928508
    144 https://doi.org/10.1007/s00220-014-2112-z
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/s00222-004-0375-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008524964
    147 https://doi.org/10.1007/s00222-004-0375-2
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1023/a:1001847914402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012744203
    150 https://doi.org/10.1023/a:1001847914402
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1088/1126-6708/2007/05/079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771754
    153 https://doi.org/10.1088/1126-6708/2007/05/079
    154 rdf:type schema:CreativeWork
    155 grid-institutes:grid.26999.3d schema:alternateName Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan
    156 schema:name Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan
    157 rdf:type schema:Organization
    158 grid-institutes:grid.36425.36 schema:alternateName Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA
    159 schema:name Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA
    160 rdf:type schema:Organization
    161 grid-institutes:grid.440880.0 schema:alternateName Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    162 schema:name Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...