A Solution of Gaussian Optimizer Conjecture for Quantum Channels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-03

AUTHORS

V. Giovannetti, A. S. Holevo, R. García-Patrón

ABSTRACT

The long-standing conjectures of the optimality of Gaussian inputs and additivity are solved for a broad class of gauge-covariant or contravariant bosonic Gaussian channels (which includes in particular thermal, additive classical noise, and amplifier channels) restricting to the class of states with finite second moments. We show that the vacuum is the input state which minimizes the entropy at the output of such channels. This allows us to show also that the classical capacity of these channels (under the input energy constraint) is additive and is achieved by Gaussian encodings. More... »

PAGES

1553-1571

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6

DOI

http://dx.doi.org/10.1007/s00220-014-2150-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035207380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannetti", 
        "givenName": "V.", 
        "id": "sg:person.0751566121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Steklov Mathematical Institute, RAS, 119991, Moscow, Russia", 
            "National Research University Higher School of Economics (HSE), 101000, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Libre de Bruxelles", 
          "id": "https://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Center for Quantum Information and Communication, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles, 1050, Bruxelles, Belgium", 
            "Max-Planck Institut f\u00fcr Quantenoptik, Hans-Kopfermann Str. 1, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Patr\u00f3n", 
        "givenName": "R.", 
        "id": "sg:person.01032027137.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032027137.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1005841402", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-79504-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005841402", 
          "https://doi.org/10.1007/978-3-642-79504-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-79504-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005841402", 
          "https://doi.org/10.1007/978-3-642-79504-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018624925", 
          "https://doi.org/10.1038/nphoton.2012.342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.062313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019207543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.062313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019207543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110273403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022441139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.062323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022807825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.062323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022807825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031768393", 
          "https://doi.org/10.1038/nphoton.2013.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050601467", 
          "https://doi.org/10.1038/ncomms4826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/4/046001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052500201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1998v053n06abeh000091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2006v061n06abeh004377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.651037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.720553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2012.2191475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0040585x97981470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4903108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098513653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "The long-standing conjectures of the optimality of Gaussian inputs and additivity are solved for a broad class of gauge-covariant or contravariant bosonic Gaussian channels (which includes in particular thermal, additive classical noise, and amplifier channels) restricting to the class of states with finite second moments. We show that the vacuum is the input state which minimizes the entropy at the output of such channels. This allows us to show also that the classical capacity of these channels (under the input energy constraint) is additive and is achieved by Gaussian encodings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-014-2150-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "334"
      }
    ], 
    "name": "A Solution of Gaussian Optimizer Conjecture for Quantum Channels", 
    "pagination": "1553-1571", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7b65e85d705343e13f8eab9989e6dadc9723e10a22f2178ea5397b0bfd3bf6b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-014-2150-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035207380"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-014-2150-6", 
      "https://app.dimensions.ai/details/publication/pub.1035207380"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-014-2150-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-014-2150-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Ne76af33575e546aaa3de6d9dc84aaeac
4 schema:citation sg:pub.10.1007/978-3-642-79504-6
5 sg:pub.10.1038/ncomms4826
6 sg:pub.10.1038/nphoton.2012.342
7 sg:pub.10.1038/nphoton.2013.193
8 https://app.dimensions.ai/details/publication/pub.1005841402
9 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
10 https://doi.org/10.1063/1.4903108
11 https://doi.org/10.1070/rm1998v053n06abeh000091
12 https://doi.org/10.1070/rm2006v061n06abeh004377
13 https://doi.org/10.1088/0034-4885/75/4/046001
14 https://doi.org/10.1088/1751-8113/43/41/415305
15 https://doi.org/10.1103/physreva.56.131
16 https://doi.org/10.1103/physreva.59.1820
17 https://doi.org/10.1103/physreva.63.032312
18 https://doi.org/10.1103/physreva.68.062323
19 https://doi.org/10.1103/physreva.70.032315
20 https://doi.org/10.1103/physreva.80.062313
21 https://doi.org/10.1103/physrevlett.108.110505
22 https://doi.org/10.1103/physrevlett.110.040501
23 https://doi.org/10.1103/revmodphys.50.221
24 https://doi.org/10.1103/revmodphys.66.481
25 https://doi.org/10.1109/18.651037
26 https://doi.org/10.1109/18.720553
27 https://doi.org/10.1109/tit.2012.2191475
28 https://doi.org/10.1137/s0040585x97981470
29 https://doi.org/10.1515/9783110273403
30 schema:datePublished 2015-03
31 schema:datePublishedReg 2015-03-01
32 schema:description The long-standing conjectures of the optimality of Gaussian inputs and additivity are solved for a broad class of gauge-covariant or contravariant bosonic Gaussian channels (which includes in particular thermal, additive classical noise, and amplifier channels) restricting to the class of states with finite second moments. We show that the vacuum is the input state which minimizes the entropy at the output of such channels. This allows us to show also that the classical capacity of these channels (under the input energy constraint) is additive and is achieved by Gaussian encodings.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N206fa73418514a909c4d6bdc08a5f9b0
37 Nfd038d8f6e324f17a0e160a535d6907c
38 sg:journal.1136216
39 schema:name A Solution of Gaussian Optimizer Conjecture for Quantum Channels
40 schema:pagination 1553-1571
41 schema:productId N936771aa12084f96818aaab5415be2eb
42 N9da636a2aab7467bb2fb39ca1b7faf9b
43 Na9f1d546a6ca48e29c833aee09bea338
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035207380
45 https://doi.org/10.1007/s00220-014-2150-6
46 schema:sdDatePublished 2019-04-10T23:25
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N0d3584ba56e6467984982aa47045cdb9
49 schema:url http://link.springer.com/10.1007%2Fs00220-014-2150-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0d3584ba56e6467984982aa47045cdb9 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N206fa73418514a909c4d6bdc08a5f9b0 schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 N8fa2bef6111c460b9eddf20dd33ef970 schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127, Pisa, Italy
58 rdf:type schema:Organization
59 N936771aa12084f96818aaab5415be2eb schema:name doi
60 schema:value 10.1007/s00220-014-2150-6
61 rdf:type schema:PropertyValue
62 N9da636a2aab7467bb2fb39ca1b7faf9b schema:name readcube_id
63 schema:value a7b65e85d705343e13f8eab9989e6dadc9723e10a22f2178ea5397b0bfd3bf6b
64 rdf:type schema:PropertyValue
65 Na71e7f445ad24305a8b669bc478ee96f rdf:first sg:person.01032027137.99
66 rdf:rest rdf:nil
67 Na9f1d546a6ca48e29c833aee09bea338 schema:name dimensions_id
68 schema:value pub.1035207380
69 rdf:type schema:PropertyValue
70 Ne76af33575e546aaa3de6d9dc84aaeac rdf:first sg:person.0751566121.99
71 rdf:rest Nfc5a49a24a3a44b8ac9e6fe038affdd5
72 Nfc5a49a24a3a44b8ac9e6fe038affdd5 rdf:first sg:person.012742037634.56
73 rdf:rest Na71e7f445ad24305a8b669bc478ee96f
74 Nfd038d8f6e324f17a0e160a535d6907c schema:volumeNumber 334
75 rdf:type schema:PublicationVolume
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
80 schema:name Other Physical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1136216 schema:issn 0010-3616
83 1432-0916
84 schema:name Communications in Mathematical Physics
85 rdf:type schema:Periodical
86 sg:person.01032027137.99 schema:affiliation https://www.grid.ac/institutes/grid.4989.c
87 schema:familyName García-Patrón
88 schema:givenName R.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032027137.99
90 rdf:type schema:Person
91 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
92 schema:familyName Holevo
93 schema:givenName A. S.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
95 rdf:type schema:Person
96 sg:person.0751566121.99 schema:affiliation N8fa2bef6111c460b9eddf20dd33ef970
97 schema:familyName Giovannetti
98 schema:givenName V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-642-79504-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005841402
102 https://doi.org/10.1007/978-3-642-79504-6
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ncomms4826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050601467
105 https://doi.org/10.1038/ncomms4826
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nphoton.2012.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018624925
108 https://doi.org/10.1038/nphoton.2012.342
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nphoton.2013.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031768393
111 https://doi.org/10.1038/nphoton.2013.193
112 rdf:type schema:CreativeWork
113 https://app.dimensions.ai/details/publication/pub.1005841402 schema:CreativeWork
114 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.4903108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098513653
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1070/rm1998v053n06abeh000091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197108
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1070/rm2006v061n06abeh004377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197977
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0034-4885/75/4/046001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052500201
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/1751-8113/43/41/415305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938061
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreva.56.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492887
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physreva.59.1820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494577
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physreva.63.032312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496978
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physreva.68.062323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022807825
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreva.70.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065014
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreva.80.062313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019207543
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.108.110505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002063646
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.110.040501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038138166
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/revmodphys.50.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838892
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/revmodphys.66.481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839325
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/18.651037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100566
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/18.720553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100785
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tit.2012.2191475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653887
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/s0040585x97981470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878556
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1515/9783110273403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022441139
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
157 schema:name National Research University Higher School of Economics (HSE), 101000, Moscow, Russia
158 Steklov Mathematical Institute, RAS, 119991, Moscow, Russia
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.4989.c schema:alternateName Université Libre de Bruxelles
161 schema:name Center for Quantum Information and Communication, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles, 1050, Bruxelles, Belgium
162 Max-Planck Institut für Quantenoptik, Hans-Kopfermann Str. 1, 85748, Garching, Germany
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...