A Solution of Gaussian Optimizer Conjecture for Quantum Channels View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-03

AUTHORS

V. Giovannetti, A. S. Holevo, R. García-Patrón

ABSTRACT

The long-standing conjectures of the optimality of Gaussian inputs and additivity are solved for a broad class of gauge-covariant or contravariant bosonic Gaussian channels (which includes in particular thermal, additive classical noise, and amplifier channels) restricting to the class of states with finite second moments. We show that the vacuum is the input state which minimizes the entropy at the output of such channels. This allows us to show also that the classical capacity of these channels (under the input energy constraint) is additive and is achieved by Gaussian encodings. More... »

PAGES

1553-1571

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6

DOI

http://dx.doi.org/10.1007/s00220-014-2150-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035207380


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127, Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannetti", 
        "givenName": "V.", 
        "id": "sg:person.0751566121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research University Higher School of Economics", 
          "id": "https://www.grid.ac/institutes/grid.410682.9", 
          "name": [
            "Steklov Mathematical Institute, RAS, 119991, Moscow, Russia", 
            "National Research University Higher School of Economics (HSE), 101000, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holevo", 
        "givenName": "A. S.", 
        "id": "sg:person.012742037634.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Libre de Bruxelles", 
          "id": "https://www.grid.ac/institutes/grid.4989.c", 
          "name": [
            "Center for Quantum Information and Communication, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles, 1050, Bruxelles, Belgium", 
            "Max-Planck Institut f\u00fcr Quantenoptik, Hans-Kopfermann Str. 1, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Patr\u00f3n", 
        "givenName": "R.", 
        "id": "sg:person.01032027137.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032027137.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.110505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002063646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1005841402", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-79504-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005841402", 
          "https://doi.org/10.1007/978-3-642-79504-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-79504-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005841402", 
          "https://doi.org/10.1007/978-3-642-79504-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/41/415305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006938061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.032315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018624925", 
          "https://doi.org/10.1038/nphoton.2012.342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.062313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019207543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.062313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019207543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110273403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022441139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.062323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022807825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.062323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022807825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2013.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031768393", 
          "https://doi.org/10.1038/nphoton.2013.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.040501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038138166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050601467", 
          "https://doi.org/10.1038/ncomms4826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/4/046001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052500201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1538-7305.1948.tb01338.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052867467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1998v053n06abeh000091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm2006v061n06abeh004377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.1820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.63.032312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.50.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060838892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.66.481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.651037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/18.720553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2012.2191475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061653887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0040585x97981470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062878556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4903108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098513653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "The long-standing conjectures of the optimality of Gaussian inputs and additivity are solved for a broad class of gauge-covariant or contravariant bosonic Gaussian channels (which includes in particular thermal, additive classical noise, and amplifier channels) restricting to the class of states with finite second moments. We show that the vacuum is the input state which minimizes the entropy at the output of such channels. This allows us to show also that the classical capacity of these channels (under the input energy constraint) is additive and is achieved by Gaussian encodings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-014-2150-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "334"
      }
    ], 
    "name": "A Solution of Gaussian Optimizer Conjecture for Quantum Channels", 
    "pagination": "1553-1571", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7b65e85d705343e13f8eab9989e6dadc9723e10a22f2178ea5397b0bfd3bf6b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-014-2150-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035207380"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-014-2150-6", 
      "https://app.dimensions.ai/details/publication/pub.1035207380"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-014-2150-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2150-6'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-014-2150-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N4570139a5e864368ac1ca117736036d5
4 schema:citation sg:pub.10.1007/978-3-642-79504-6
5 sg:pub.10.1038/ncomms4826
6 sg:pub.10.1038/nphoton.2012.342
7 sg:pub.10.1038/nphoton.2013.193
8 https://app.dimensions.ai/details/publication/pub.1005841402
9 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
10 https://doi.org/10.1063/1.4903108
11 https://doi.org/10.1070/rm1998v053n06abeh000091
12 https://doi.org/10.1070/rm2006v061n06abeh004377
13 https://doi.org/10.1088/0034-4885/75/4/046001
14 https://doi.org/10.1088/1751-8113/43/41/415305
15 https://doi.org/10.1103/physreva.56.131
16 https://doi.org/10.1103/physreva.59.1820
17 https://doi.org/10.1103/physreva.63.032312
18 https://doi.org/10.1103/physreva.68.062323
19 https://doi.org/10.1103/physreva.70.032315
20 https://doi.org/10.1103/physreva.80.062313
21 https://doi.org/10.1103/physrevlett.108.110505
22 https://doi.org/10.1103/physrevlett.110.040501
23 https://doi.org/10.1103/revmodphys.50.221
24 https://doi.org/10.1103/revmodphys.66.481
25 https://doi.org/10.1109/18.651037
26 https://doi.org/10.1109/18.720553
27 https://doi.org/10.1109/tit.2012.2191475
28 https://doi.org/10.1137/s0040585x97981470
29 https://doi.org/10.1515/9783110273403
30 schema:datePublished 2015-03
31 schema:datePublishedReg 2015-03-01
32 schema:description The long-standing conjectures of the optimality of Gaussian inputs and additivity are solved for a broad class of gauge-covariant or contravariant bosonic Gaussian channels (which includes in particular thermal, additive classical noise, and amplifier channels) restricting to the class of states with finite second moments. We show that the vacuum is the input state which minimizes the entropy at the output of such channels. This allows us to show also that the classical capacity of these channels (under the input energy constraint) is additive and is achieved by Gaussian encodings.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N4328df05b8044000ab94e9d1edc4266e
37 Ndcf3a0d50b8b46ee9d2156b639950a2d
38 sg:journal.1136216
39 schema:name A Solution of Gaussian Optimizer Conjecture for Quantum Channels
40 schema:pagination 1553-1571
41 schema:productId N1d9b0b85858743c98f98b2cd08834c3f
42 N81b4958baf2941aa89589a0acbe74ee8
43 Ndcbfaf9604d8487aad5db85acbc7e8a0
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035207380
45 https://doi.org/10.1007/s00220-014-2150-6
46 schema:sdDatePublished 2019-04-10T23:25
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N4a7495c7d0884deba65762e026a2379f
49 schema:url http://link.springer.com/10.1007%2Fs00220-014-2150-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1d9b0b85858743c98f98b2cd08834c3f schema:name doi
54 schema:value 10.1007/s00220-014-2150-6
55 rdf:type schema:PropertyValue
56 N4328df05b8044000ab94e9d1edc4266e schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 N4570139a5e864368ac1ca117736036d5 rdf:first sg:person.0751566121.99
59 rdf:rest Ncccc58a3507241feab69c224b79d69fa
60 N4a7495c7d0884deba65762e026a2379f schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N5fe0821b9f36496da4e9a1ed08bba04e schema:name NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127, Pisa, Italy
63 rdf:type schema:Organization
64 N81b4958baf2941aa89589a0acbe74ee8 schema:name dimensions_id
65 schema:value pub.1035207380
66 rdf:type schema:PropertyValue
67 Nb190c4df464d490eb78df1ef185ccbd6 rdf:first sg:person.01032027137.99
68 rdf:rest rdf:nil
69 Ncccc58a3507241feab69c224b79d69fa rdf:first sg:person.012742037634.56
70 rdf:rest Nb190c4df464d490eb78df1ef185ccbd6
71 Ndcbfaf9604d8487aad5db85acbc7e8a0 schema:name readcube_id
72 schema:value a7b65e85d705343e13f8eab9989e6dadc9723e10a22f2178ea5397b0bfd3bf6b
73 rdf:type schema:PropertyValue
74 Ndcf3a0d50b8b46ee9d2156b639950a2d schema:volumeNumber 334
75 rdf:type schema:PublicationVolume
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
80 schema:name Other Physical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1136216 schema:issn 0010-3616
83 1432-0916
84 schema:name Communications in Mathematical Physics
85 rdf:type schema:Periodical
86 sg:person.01032027137.99 schema:affiliation https://www.grid.ac/institutes/grid.4989.c
87 schema:familyName García-Patrón
88 schema:givenName R.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032027137.99
90 rdf:type schema:Person
91 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.410682.9
92 schema:familyName Holevo
93 schema:givenName A. S.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
95 rdf:type schema:Person
96 sg:person.0751566121.99 schema:affiliation N5fe0821b9f36496da4e9a1ed08bba04e
97 schema:familyName Giovannetti
98 schema:givenName V.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
100 rdf:type schema:Person
101 sg:pub.10.1007/978-3-642-79504-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005841402
102 https://doi.org/10.1007/978-3-642-79504-6
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ncomms4826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050601467
105 https://doi.org/10.1038/ncomms4826
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nphoton.2012.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018624925
108 https://doi.org/10.1038/nphoton.2012.342
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nphoton.2013.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031768393
111 https://doi.org/10.1038/nphoton.2013.193
112 rdf:type schema:CreativeWork
113 https://app.dimensions.ai/details/publication/pub.1005841402 schema:CreativeWork
114 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052867467
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1063/1.4903108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098513653
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1070/rm1998v053n06abeh000091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197108
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1070/rm2006v061n06abeh004377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197977
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0034-4885/75/4/046001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052500201
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/1751-8113/43/41/415305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006938061
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreva.56.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492887
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physreva.59.1820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494577
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physreva.63.032312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496978
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physreva.68.062323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022807825
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physreva.70.032315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065014
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physreva.80.062313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019207543
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevlett.108.110505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002063646
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevlett.110.040501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038138166
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/revmodphys.50.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060838892
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/revmodphys.66.481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839325
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/18.651037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100566
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/18.720553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100785
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tit.2012.2191475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061653887
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1137/s0040585x97981470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062878556
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1515/9783110273403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022441139
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.410682.9 schema:alternateName National Research University Higher School of Economics
157 schema:name National Research University Higher School of Economics (HSE), 101000, Moscow, Russia
158 Steklov Mathematical Institute, RAS, 119991, Moscow, Russia
159 rdf:type schema:Organization
160 https://www.grid.ac/institutes/grid.4989.c schema:alternateName Université Libre de Bruxelles
161 schema:name Center for Quantum Information and Communication, Ecole Polytechnique de Bruxelles, CP 165, Universite Libre de Bruxelles, 1050, Bruxelles, Belgium
162 Max-Planck Institut für Quantenoptik, Hans-Kopfermann Str. 1, 85748, Garching, Germany
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...