Metastable States When the Fermi Golden Rule Constant Vanishes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-08-07

AUTHORS

Horia D. Cornean, Arne Jensen, Gheorghe Nenciu

ABSTRACT

Resonances appearing by perturbation of embedded non-degenerate eigenvalues are studied in the case when the Fermi Golden Rule constant vanishes. Under appropriate smoothness properties for the resolvent of the unperturbed Hamiltonian, it is proved that the first order Rayleigh–Schrödinger expansion exists. The corresponding metastable states are constructed using this truncated expansion. We show that their exponential decay law has both the decay rate and the error term of order ɛ4, where ɛ is the perturbation strength. More... »

PAGES

1189-1218

References to SciGraph publications

  • 1971-12. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1986-12. Truncated Gamow functions, α-decay and the exponential law in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2006-11. Schrödinger operators on the half line: Resolvent expansions and the Fermi golden rule at thresholds in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 1990-01. Quantum mechanical resonance and limiting absorption: The many body problem in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-11. Resonance Theory for Schrödinger Operators in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-07-27. Almost Exponential Decay of Quantum Resonance States and Paley–Wiener Type Estimates in Gevrey Spaces in ANNALES HENRI POINCARÉ
  • 1999-04. A Time-Dependent Theory of Quantum Resonances in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1988-09. Seeking non-exponential decay in NATURE
  • 1996. C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians in NONE
  • 2011-06-18. Second Order Perturbation Theory for Embedded Eigenvalues in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1990-08. Resonances, metastable states and exponential decay laws in perturbation theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1975-12. Resonances, spectral concentration and exponential decay in LETTERS IN MATHEMATICAL PHYSICS
  • 2006-04-18. A General Resonance Theory Based on Mourre’s Inequality in ANNALES HENRI POINCARÉ
  • 1998-12. Time Dependent Resonance Theory in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2005-09-20. The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5

    DOI

    http://dx.doi.org/10.1007/s00220-014-2127-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037436379


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5117.2", 
              "name": [
                "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cornean", 
            "givenName": "Horia D.", 
            "id": "sg:person.07770170073.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5117.2", 
              "name": [
                "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Arne", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/grid.418333.e", 
              "name": [
                "Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nenciu", 
            "givenName": "Gheorghe", 
            "id": "sg:person.015403713705.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00220-011-1278-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023990004", 
              "https://doi.org/10.1007/s00220-011-1278-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005305217", 
              "https://doi.org/10.1007/s002200050568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02829696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052832448", 
              "https://doi.org/10.1007/bf02829696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-010-0036-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014301821", 
              "https://doi.org/10.1007/s00023-010-0036-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02278006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011687585", 
              "https://doi.org/10.1007/bf02278006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00405583", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042648294", 
              "https://doi.org/10.1007/bf00405583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000885197", 
              "https://doi.org/10.1007/bf01211067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/335298a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043169769", 
              "https://doi.org/10.1038/335298a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7762-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021086030", 
              "https://doi.org/10.1007/978-3-0348-7762-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-005-0261-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037825323", 
              "https://doi.org/10.1007/s00023-005-0261-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005199088", 
              "https://doi.org/10.1007/s002200100558"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043069953", 
              "https://doi.org/10.1007/bf01877511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-005-1428-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019860762", 
              "https://doi.org/10.1007/s00220-005-1428-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s000390050124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026894586", 
              "https://doi.org/10.1007/s000390050124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02125700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029849640", 
              "https://doi.org/10.1007/bf02125700"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-08-07", 
        "datePublishedReg": "2014-08-07", 
        "description": "Resonances appearing by perturbation of embedded non-degenerate eigenvalues are studied in the case when the Fermi Golden Rule constant vanishes. Under appropriate smoothness properties for the resolvent of the unperturbed Hamiltonian, it is proved that the first order Rayleigh\u2013Schr\u00f6dinger expansion exists. The corresponding metastable states are constructed using this truncated expansion. We show that their exponential decay law has both the decay rate and the error term of order \u025b4, where \u025b is the perturbation strength.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00220-014-2127-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "334"
          }
        ], 
        "keywords": [
          "state", 
          "exponential decay law", 
          "decay law", 
          "law", 
          "golden rule", 
          "rules", 
          "resonance", 
          "cases", 
          "properties", 
          "expansion", 
          "metastable states", 
          "rate", 
          "terms", 
          "order", 
          "strength", 
          "Fermi's golden rule", 
          "perturbations", 
          "non-degenerate eigenvalues", 
          "eigenvalues", 
          "constant vanishes", 
          "vanishes", 
          "smoothness properties", 
          "resolvent", 
          "unperturbed Hamiltonian", 
          "Hamiltonian", 
          "Rayleigh-Schr\u00f6dinger expansion", 
          "corresponding metastable states", 
          "decay rate", 
          "error term", 
          "perturbation strength"
        ], 
        "name": "Metastable States When the Fermi Golden Rule Constant Vanishes", 
        "pagination": "1189-1218", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037436379"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-014-2127-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-014-2127-5", 
          "https://app.dimensions.ai/details/publication/pub.1037436379"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_621.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00220-014-2127-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      22 PREDICATES      73 URIs      47 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-014-2127-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0105
    4 anzsrc-for:02
    5 anzsrc-for:0206
    6 schema:author N50881e52afac43dcbb42142161b465bd
    7 schema:citation sg:pub.10.1007/978-3-0348-7762-6
    8 sg:pub.10.1007/bf00405583
    9 sg:pub.10.1007/bf01211067
    10 sg:pub.10.1007/bf01877511
    11 sg:pub.10.1007/bf02125700
    12 sg:pub.10.1007/bf02278006
    13 sg:pub.10.1007/bf02829696
    14 sg:pub.10.1007/s00023-005-0261-5
    15 sg:pub.10.1007/s00023-010-0036-5
    16 sg:pub.10.1007/s000390050124
    17 sg:pub.10.1007/s00220-005-1428-0
    18 sg:pub.10.1007/s00220-011-1278-x
    19 sg:pub.10.1007/s002200050568
    20 sg:pub.10.1007/s002200100558
    21 sg:pub.10.1038/335298a0
    22 schema:datePublished 2014-08-07
    23 schema:datePublishedReg 2014-08-07
    24 schema:description Resonances appearing by perturbation of embedded non-degenerate eigenvalues are studied in the case when the Fermi Golden Rule constant vanishes. Under appropriate smoothness properties for the resolvent of the unperturbed Hamiltonian, it is proved that the first order Rayleigh–Schrödinger expansion exists. The corresponding metastable states are constructed using this truncated expansion. We show that their exponential decay law has both the decay rate and the error term of order ɛ4, where ɛ is the perturbation strength.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N0f327379202f44c383d079e9410dc51a
    29 N4ac70dabe912457d8ccfdae3f2a54154
    30 sg:journal.1136216
    31 schema:keywords Fermi's golden rule
    32 Hamiltonian
    33 Rayleigh-Schrödinger expansion
    34 cases
    35 constant vanishes
    36 corresponding metastable states
    37 decay law
    38 decay rate
    39 eigenvalues
    40 error term
    41 expansion
    42 exponential decay law
    43 golden rule
    44 law
    45 metastable states
    46 non-degenerate eigenvalues
    47 order
    48 perturbation strength
    49 perturbations
    50 properties
    51 rate
    52 resolvent
    53 resonance
    54 rules
    55 smoothness properties
    56 state
    57 strength
    58 terms
    59 unperturbed Hamiltonian
    60 vanishes
    61 schema:name Metastable States When the Fermi Golden Rule Constant Vanishes
    62 schema:pagination 1189-1218
    63 schema:productId N5087d10725b247509b5627075c4f29a2
    64 Nbf87fca5555844b0a8f88b175bc1edfc
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037436379
    66 https://doi.org/10.1007/s00220-014-2127-5
    67 schema:sdDatePublished 2022-05-20T07:29
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher Nac38f167649649aa85a57ff51e0a73c8
    70 schema:url https://doi.org/10.1007/s00220-014-2127-5
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N0f327379202f44c383d079e9410dc51a schema:volumeNumber 334
    75 rdf:type schema:PublicationVolume
    76 N2c72ecda28f24e108986674a9b215466 rdf:first sg:person.015240561701.11
    77 rdf:rest Ne7cdbe9edc1c4eb8a711d7262b224f6f
    78 N4ac70dabe912457d8ccfdae3f2a54154 schema:issueNumber 3
    79 rdf:type schema:PublicationIssue
    80 N5087d10725b247509b5627075c4f29a2 schema:name dimensions_id
    81 schema:value pub.1037436379
    82 rdf:type schema:PropertyValue
    83 N50881e52afac43dcbb42142161b465bd rdf:first sg:person.07770170073.57
    84 rdf:rest N2c72ecda28f24e108986674a9b215466
    85 Nac38f167649649aa85a57ff51e0a73c8 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 Nbf87fca5555844b0a8f88b175bc1edfc schema:name doi
    88 schema:value 10.1007/s00220-014-2127-5
    89 rdf:type schema:PropertyValue
    90 Ne7cdbe9edc1c4eb8a711d7262b224f6f rdf:first sg:person.015403713705.47
    91 rdf:rest rdf:nil
    92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Mathematical Sciences
    94 rdf:type schema:DefinedTerm
    95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Pure Mathematics
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Physics
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Physical Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Quantum Physics
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1136216 schema:issn 0010-3616
    108 1432-0916
    109 schema:name Communications in Mathematical Physics
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.5117.2
    113 schema:familyName Jensen
    114 schema:givenName Arne
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    116 rdf:type schema:Person
    117 sg:person.015403713705.47 schema:affiliation grid-institutes:grid.418333.e
    118 schema:familyName Nenciu
    119 schema:givenName Gheorghe
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47
    121 rdf:type schema:Person
    122 sg:person.07770170073.57 schema:affiliation grid-institutes:grid.5117.2
    123 schema:familyName Cornean
    124 schema:givenName Horia D.
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57
    126 rdf:type schema:Person
    127 sg:pub.10.1007/978-3-0348-7762-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021086030
    128 https://doi.org/10.1007/978-3-0348-7762-6
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/bf00405583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042648294
    131 https://doi.org/10.1007/bf00405583
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/bf01211067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000885197
    134 https://doi.org/10.1007/bf01211067
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf01877511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043069953
    137 https://doi.org/10.1007/bf01877511
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf02125700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029849640
    140 https://doi.org/10.1007/bf02125700
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf02278006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011687585
    143 https://doi.org/10.1007/bf02278006
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02829696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052832448
    146 https://doi.org/10.1007/bf02829696
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00023-005-0261-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037825323
    149 https://doi.org/10.1007/s00023-005-0261-5
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s00023-010-0036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014301821
    152 https://doi.org/10.1007/s00023-010-0036-5
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s000390050124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026894586
    155 https://doi.org/10.1007/s000390050124
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00220-005-1428-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019860762
    158 https://doi.org/10.1007/s00220-005-1428-0
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s00220-011-1278-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023990004
    161 https://doi.org/10.1007/s00220-011-1278-x
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s002200050568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005305217
    164 https://doi.org/10.1007/s002200050568
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s002200100558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005199088
    167 https://doi.org/10.1007/s002200100558
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/335298a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043169769
    170 https://doi.org/10.1038/335298a0
    171 rdf:type schema:CreativeWork
    172 grid-institutes:grid.418333.e schema:alternateName Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania
    173 schema:name Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania
    174 rdf:type schema:Organization
    175 grid-institutes:grid.5117.2 schema:alternateName Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg Ø, Denmark
    176 schema:name Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg Ø, Denmark
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...