Metastable States When the Fermi Golden Rule Constant Vanishes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-08-07

AUTHORS

Horia D. Cornean, Arne Jensen, Gheorghe Nenciu

ABSTRACT

Resonances appearing by perturbation of embedded non-degenerate eigenvalues are studied in the case when the Fermi Golden Rule constant vanishes. Under appropriate smoothness properties for the resolvent of the unperturbed Hamiltonian, it is proved that the first order Rayleigh–Schrödinger expansion exists. The corresponding metastable states are constructed using this truncated expansion. We show that their exponential decay law has both the decay rate and the error term of order ɛ4, where ɛ is the perturbation strength. More... »

PAGES

1189-1218

References to SciGraph publications

  • 1971-12. Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1986-12. Truncated Gamow functions, α-decay and the exponential law in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2006-11. Schrödinger operators on the half line: Resolvent expansions and the Fermi golden rule at thresholds in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 1990-01. Quantum mechanical resonance and limiting absorption: The many body problem in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-11. Resonance Theory for Schrödinger Operators in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-07-27. Almost Exponential Decay of Quantum Resonance States and Paley–Wiener Type Estimates in Gevrey Spaces in ANNALES HENRI POINCARÉ
  • 1999-04. A Time-Dependent Theory of Quantum Resonances in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1988-09. Seeking non-exponential decay in NATURE
  • 1996. C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians in NONE
  • 2011-06-18. Second Order Perturbation Theory for Embedded Eigenvalues in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1990-08. Resonances, metastable states and exponential decay laws in perturbation theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1975-12. Resonances, spectral concentration and exponential decay in LETTERS IN MATHEMATICAL PHYSICS
  • 2006-04-18. A General Resonance Theory Based on Mourre’s Inequality in ANNALES HENRI POINCARÉ
  • 1998-12. Time Dependent Resonance Theory in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2005-09-20. The Fermi Golden Rule and its Form at Thresholds in Odd Dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5

    DOI

    http://dx.doi.org/10.1007/s00220-014-2127-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037436379


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5117.2", 
              "name": [
                "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cornean", 
            "givenName": "Horia D.", 
            "id": "sg:person.07770170073.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5117.2", 
              "name": [
                "Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Arne", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/grid.418333.e", 
              "name": [
                "Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nenciu", 
            "givenName": "Gheorghe", 
            "id": "sg:person.015403713705.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00220-005-1428-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019860762", 
              "https://doi.org/10.1007/s00220-005-1428-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7762-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021086030", 
              "https://doi.org/10.1007/978-3-0348-7762-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02278006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011687585", 
              "https://doi.org/10.1007/bf02278006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s000390050124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026894586", 
              "https://doi.org/10.1007/s000390050124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02125700", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029849640", 
              "https://doi.org/10.1007/bf02125700"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-011-1278-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023990004", 
              "https://doi.org/10.1007/s00220-011-1278-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000885197", 
              "https://doi.org/10.1007/bf01211067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-005-0261-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037825323", 
              "https://doi.org/10.1007/s00023-005-0261-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-010-0036-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014301821", 
              "https://doi.org/10.1007/s00023-010-0036-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005305217", 
              "https://doi.org/10.1007/s002200050568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043069953", 
              "https://doi.org/10.1007/bf01877511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02829696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052832448", 
              "https://doi.org/10.1007/bf02829696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/335298a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043169769", 
              "https://doi.org/10.1038/335298a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00405583", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042648294", 
              "https://doi.org/10.1007/bf00405583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200100558", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005199088", 
              "https://doi.org/10.1007/s002200100558"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-08-07", 
        "datePublishedReg": "2014-08-07", 
        "description": "Resonances appearing by perturbation of embedded non-degenerate eigenvalues are studied in the case when the Fermi Golden Rule constant vanishes. Under appropriate smoothness properties for the resolvent of the unperturbed Hamiltonian, it is proved that the first order Rayleigh\u2013Schr\u00f6dinger expansion exists. The corresponding metastable states are constructed using this truncated expansion. We show that their exponential decay law has both the decay rate and the error term of order \u025b4, where \u025b is the perturbation strength.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00220-014-2127-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "334"
          }
        ], 
        "keywords": [
          "state", 
          "law", 
          "golden rule", 
          "rules", 
          "cases", 
          "exponential decay law", 
          "decay law", 
          "expansion", 
          "terms", 
          "order", 
          "properties", 
          "resonance", 
          "perturbations", 
          "eigenvalues", 
          "constant vanishes", 
          "vanishes", 
          "resolvent", 
          "decay rate", 
          "rate", 
          "error term", 
          "perturbation strength", 
          "strength", 
          "Fermi's golden rule", 
          "non-degenerate eigenvalues", 
          "Fermi Golden Rule constant vanishes", 
          "Golden Rule constant vanishes", 
          "Rule constant vanishes", 
          "appropriate smoothness properties", 
          "smoothness properties", 
          "unperturbed Hamiltonian", 
          "Hamiltonian", 
          "first order Rayleigh\u2013Schr\u00f6dinger expansion", 
          "order Rayleigh\u2013Schr\u00f6dinger expansion", 
          "Rayleigh-Schr\u00f6dinger expansion", 
          "corresponding metastable states", 
          "metastable states"
        ], 
        "name": "Metastable States When the Fermi Golden Rule Constant Vanishes", 
        "pagination": "1189-1218", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037436379"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-014-2127-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-014-2127-5", 
          "https://app.dimensions.ai/details/publication/pub.1037436379"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_623.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00220-014-2127-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2127-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      22 PREDICATES      79 URIs      53 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-014-2127-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0105
    4 anzsrc-for:02
    5 anzsrc-for:0206
    6 schema:author Nf55138ffa5a74b26a9f6296512cac20c
    7 schema:citation sg:pub.10.1007/978-3-0348-7762-6
    8 sg:pub.10.1007/bf00405583
    9 sg:pub.10.1007/bf01211067
    10 sg:pub.10.1007/bf01877511
    11 sg:pub.10.1007/bf02125700
    12 sg:pub.10.1007/bf02278006
    13 sg:pub.10.1007/bf02829696
    14 sg:pub.10.1007/s00023-005-0261-5
    15 sg:pub.10.1007/s00023-010-0036-5
    16 sg:pub.10.1007/s000390050124
    17 sg:pub.10.1007/s00220-005-1428-0
    18 sg:pub.10.1007/s00220-011-1278-x
    19 sg:pub.10.1007/s002200050568
    20 sg:pub.10.1007/s002200100558
    21 sg:pub.10.1038/335298a0
    22 schema:datePublished 2014-08-07
    23 schema:datePublishedReg 2014-08-07
    24 schema:description Resonances appearing by perturbation of embedded non-degenerate eigenvalues are studied in the case when the Fermi Golden Rule constant vanishes. Under appropriate smoothness properties for the resolvent of the unperturbed Hamiltonian, it is proved that the first order Rayleigh–Schrödinger expansion exists. The corresponding metastable states are constructed using this truncated expansion. We show that their exponential decay law has both the decay rate and the error term of order ɛ4, where ɛ is the perturbation strength.
    25 schema:genre article
    26 schema:inLanguage en
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N6f3adcb302704dbeb4aea49686af51d8
    29 Nc81cd187e93e4205811777cf498218e4
    30 sg:journal.1136216
    31 schema:keywords Fermi Golden Rule constant vanishes
    32 Fermi's golden rule
    33 Golden Rule constant vanishes
    34 Hamiltonian
    35 Rayleigh-Schrödinger expansion
    36 Rule constant vanishes
    37 appropriate smoothness properties
    38 cases
    39 constant vanishes
    40 corresponding metastable states
    41 decay law
    42 decay rate
    43 eigenvalues
    44 error term
    45 expansion
    46 exponential decay law
    47 first order Rayleigh–Schrödinger expansion
    48 golden rule
    49 law
    50 metastable states
    51 non-degenerate eigenvalues
    52 order
    53 order Rayleigh–Schrödinger expansion
    54 perturbation strength
    55 perturbations
    56 properties
    57 rate
    58 resolvent
    59 resonance
    60 rules
    61 smoothness properties
    62 state
    63 strength
    64 terms
    65 unperturbed Hamiltonian
    66 vanishes
    67 schema:name Metastable States When the Fermi Golden Rule Constant Vanishes
    68 schema:pagination 1189-1218
    69 schema:productId N26439c8a56f2482f8a86de913c0b95b4
    70 N4a73f3c53bd04f03821ae10e96199222
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037436379
    72 https://doi.org/10.1007/s00220-014-2127-5
    73 schema:sdDatePublished 2022-01-01T18:32
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N60f82c2292704c11ade7854727aadd7e
    76 schema:url https://doi.org/10.1007/s00220-014-2127-5
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N26439c8a56f2482f8a86de913c0b95b4 schema:name doi
    81 schema:value 10.1007/s00220-014-2127-5
    82 rdf:type schema:PropertyValue
    83 N2bf25bf26a794ad498dd7259ffb83ded rdf:first sg:person.015240561701.11
    84 rdf:rest N6db2413a23f5490db2f8fd5e6e3a6b83
    85 N4a73f3c53bd04f03821ae10e96199222 schema:name dimensions_id
    86 schema:value pub.1037436379
    87 rdf:type schema:PropertyValue
    88 N60f82c2292704c11ade7854727aadd7e schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 N6db2413a23f5490db2f8fd5e6e3a6b83 rdf:first sg:person.015403713705.47
    91 rdf:rest rdf:nil
    92 N6f3adcb302704dbeb4aea49686af51d8 schema:issueNumber 3
    93 rdf:type schema:PublicationIssue
    94 Nc81cd187e93e4205811777cf498218e4 schema:volumeNumber 334
    95 rdf:type schema:PublicationVolume
    96 Nf55138ffa5a74b26a9f6296512cac20c rdf:first sg:person.07770170073.57
    97 rdf:rest N2bf25bf26a794ad498dd7259ffb83ded
    98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Mathematical Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Pure Mathematics
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Mathematical Physics
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Physical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Quantum Physics
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1136216 schema:issn 0010-3616
    114 1432-0916
    115 schema:name Communications in Mathematical Physics
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.5117.2
    119 schema:familyName Jensen
    120 schema:givenName Arne
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    122 rdf:type schema:Person
    123 sg:person.015403713705.47 schema:affiliation grid-institutes:grid.418333.e
    124 schema:familyName Nenciu
    125 schema:givenName Gheorghe
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403713705.47
    127 rdf:type schema:Person
    128 sg:person.07770170073.57 schema:affiliation grid-institutes:grid.5117.2
    129 schema:familyName Cornean
    130 schema:givenName Horia D.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07770170073.57
    132 rdf:type schema:Person
    133 sg:pub.10.1007/978-3-0348-7762-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021086030
    134 https://doi.org/10.1007/978-3-0348-7762-6
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf00405583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042648294
    137 https://doi.org/10.1007/bf00405583
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/bf01211067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000885197
    140 https://doi.org/10.1007/bf01211067
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/bf01877511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043069953
    143 https://doi.org/10.1007/bf01877511
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02125700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029849640
    146 https://doi.org/10.1007/bf02125700
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf02278006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011687585
    149 https://doi.org/10.1007/bf02278006
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02829696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052832448
    152 https://doi.org/10.1007/bf02829696
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s00023-005-0261-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037825323
    155 https://doi.org/10.1007/s00023-005-0261-5
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s00023-010-0036-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014301821
    158 https://doi.org/10.1007/s00023-010-0036-5
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s000390050124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026894586
    161 https://doi.org/10.1007/s000390050124
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s00220-005-1428-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019860762
    164 https://doi.org/10.1007/s00220-005-1428-0
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s00220-011-1278-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023990004
    167 https://doi.org/10.1007/s00220-011-1278-x
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s002200050568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005305217
    170 https://doi.org/10.1007/s002200050568
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s002200100558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005199088
    173 https://doi.org/10.1007/s002200100558
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/335298a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043169769
    176 https://doi.org/10.1038/335298a0
    177 rdf:type schema:CreativeWork
    178 grid-institutes:grid.418333.e schema:alternateName Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania
    179 schema:name Institute of Mathematics of the Romanian Academy, Research Unit 1, Calea Grivitei 21, 010702, Bucharest, Romania
    180 rdf:type schema:Organization
    181 grid-institutes:grid.5117.2 schema:alternateName Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg Ø, Denmark
    182 schema:name Department of Mathematical Sciences, Aalborg University, Fr. Bajers Vej 7G, 9220, Aalborg Ø, Denmark
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...