Propagation of Singularities for Weak KAM Solutions and Barrier Functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-10

AUTHORS

Piermarco Cannarsa, Wei Cheng, Qi Zhang

ABSTRACT

This paper studies the structure of the singular set (points of nondifferentiability) of viscosity solutions to Hamilton–Jacobi equations associated with general mechanical systems on the n-torus. First, using the level set method, we characterize the propagation of singularities along generalized characteristics. Then, we obtain a local propagation result for singularities of weak KAM solutions in the supercritical case. Finally, we apply such a result to study the propagation of singularities for barrier functions. More... »

PAGES

1-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00220-014-2106-x

DOI

http://dx.doi.org/10.1007/s00220-014-2106-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028026216


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Rome Tor Vergata", 
          "id": "https://www.grid.ac/institutes/grid.6530.0", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cannarsa", 
        "givenName": "Piermarco", 
        "id": "sg:person.014257010655.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Department of Mathematics, Nanjing University, 210093, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Wei", 
        "id": "sg:person.01250031313.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250031313.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Qi", 
        "id": "sg:person.015176061342.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015176061342.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002050100176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005697121", 
          "https://doi.org/10.1007/s002050100176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605300701382522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007127264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-012-0835-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026992846", 
          "https://doi.org/10.1007/s00208-012-0835-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028925907", 
          "https://doi.org/10.1007/bf02571383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028925907", 
          "https://doi.org/10.1007/bf02571383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1031257740", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56468-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031257740", 
          "https://doi.org/10.1007/978-3-642-56468-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56468-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031257740", 
          "https://doi.org/10.1007/978-3-642-56468-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1031735024", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69512-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031735024", 
          "https://doi.org/10.1007/978-3-642-69512-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-69512-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031735024", 
          "https://doi.org/10.1007/978-3-642-69512-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(79)90044-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047285406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-003-0323-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052156797", 
          "https://doi.org/10.1007/s00222-003-0323-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500032121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054894894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/9/2/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059110978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2008.167.1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.1924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611971309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098553028"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "This paper studies the structure of the singular set (points of nondifferentiability) of viscosity solutions to Hamilton\u2013Jacobi equations associated with general mechanical systems on the n-torus. First, using the level set method, we characterize the propagation of singularities along generalized characteristics. Then, we obtain a local propagation result for singularities of weak KAM solutions in the supercritical case. Finally, we apply such a result to study the propagation of singularities for barrier functions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00220-014-2106-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "331"
      }
    ], 
    "name": "Propagation of Singularities for Weak KAM Solutions and Barrier Functions", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8582c118f2ca19a35e94455de3487c47cc8644656f4ec5de780fbffcc62f706d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00220-014-2106-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028026216"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00220-014-2106-x", 
      "https://app.dimensions.ai/details/publication/pub.1028026216"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00220-014-2106-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2106-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2106-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2106-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-014-2106-x'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00220-014-2106-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nbc0e15f35bc846af9a8b06b4149c42ce
4 schema:citation sg:pub.10.1007/978-3-642-56468-0
5 sg:pub.10.1007/978-3-642-69512-4
6 sg:pub.10.1007/bf02571383
7 sg:pub.10.1007/s002050100176
8 sg:pub.10.1007/s00208-012-0835-8
9 sg:pub.10.1007/s00222-003-0323-6
10 https://app.dimensions.ai/details/publication/pub.1031257740
11 https://app.dimensions.ai/details/publication/pub.1031735024
12 https://doi.org/10.1016/0362-546x(79)90044-0
13 https://doi.org/10.1017/s0308210500032121
14 https://doi.org/10.1080/03605300701382522
15 https://doi.org/10.1088/0951-7715/9/2/002
16 https://doi.org/10.1137/1.9781611971309
17 https://doi.org/10.4007/annals.2008.167.1099
18 https://doi.org/10.4171/jems/173
19 https://doi.org/10.5802/aif.1377
20 https://doi.org/10.5802/aif.1924
21 schema:datePublished 2014-10
22 schema:datePublishedReg 2014-10-01
23 schema:description This paper studies the structure of the singular set (points of nondifferentiability) of viscosity solutions to Hamilton–Jacobi equations associated with general mechanical systems on the n-torus. First, using the level set method, we characterize the propagation of singularities along generalized characteristics. Then, we obtain a local propagation result for singularities of weak KAM solutions in the supercritical case. Finally, we apply such a result to study the propagation of singularities for barrier functions.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N445b1cb2d5714c8281d66dd3de91454f
28 Nf27dd97769a64d4ab1267e33ee32ad34
29 sg:journal.1136216
30 schema:name Propagation of Singularities for Weak KAM Solutions and Barrier Functions
31 schema:pagination 1-20
32 schema:productId N2b5f1230589f4bccbdae660a7bfeefaf
33 Nce1adb19cc0a4442a3bc15b489594b46
34 Ne6bef6008fee44eb8df2f7a2db873454
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028026216
36 https://doi.org/10.1007/s00220-014-2106-x
37 schema:sdDatePublished 2019-04-10T15:52
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N5e9fcf5706f24006bd37caea4e0edac9
40 schema:url http://link.springer.com/10.1007%2Fs00220-014-2106-x
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N2b5f1230589f4bccbdae660a7bfeefaf schema:name doi
45 schema:value 10.1007/s00220-014-2106-x
46 rdf:type schema:PropertyValue
47 N3d3dadece6764f239918147dcc5004b4 rdf:first sg:person.015176061342.43
48 rdf:rest rdf:nil
49 N445b1cb2d5714c8281d66dd3de91454f schema:issueNumber 1
50 rdf:type schema:PublicationIssue
51 N5e9fcf5706f24006bd37caea4e0edac9 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nbc0e15f35bc846af9a8b06b4149c42ce rdf:first sg:person.014257010655.09
54 rdf:rest Nf1fb20b629a74529a85505df2068420a
55 Nce1adb19cc0a4442a3bc15b489594b46 schema:name dimensions_id
56 schema:value pub.1028026216
57 rdf:type schema:PropertyValue
58 Ne6bef6008fee44eb8df2f7a2db873454 schema:name readcube_id
59 schema:value 8582c118f2ca19a35e94455de3487c47cc8644656f4ec5de780fbffcc62f706d
60 rdf:type schema:PropertyValue
61 Nf1fb20b629a74529a85505df2068420a rdf:first sg:person.01250031313.52
62 rdf:rest N3d3dadece6764f239918147dcc5004b4
63 Nf27dd97769a64d4ab1267e33ee32ad34 schema:volumeNumber 331
64 rdf:type schema:PublicationVolume
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136216 schema:issn 0010-3616
72 1432-0916
73 schema:name Communications in Mathematical Physics
74 rdf:type schema:Periodical
75 sg:person.01250031313.52 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
76 schema:familyName Cheng
77 schema:givenName Wei
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250031313.52
79 rdf:type schema:Person
80 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
81 schema:familyName Cannarsa
82 schema:givenName Piermarco
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
84 rdf:type schema:Person
85 sg:person.015176061342.43 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
86 schema:familyName Zhang
87 schema:givenName Qi
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015176061342.43
89 rdf:type schema:Person
90 sg:pub.10.1007/978-3-642-56468-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031257740
91 https://doi.org/10.1007/978-3-642-56468-0
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-642-69512-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031735024
94 https://doi.org/10.1007/978-3-642-69512-4
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf02571383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028925907
97 https://doi.org/10.1007/bf02571383
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s002050100176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005697121
100 https://doi.org/10.1007/s002050100176
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00208-012-0835-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026992846
103 https://doi.org/10.1007/s00208-012-0835-8
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00222-003-0323-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052156797
106 https://doi.org/10.1007/s00222-003-0323-6
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1031257740 schema:CreativeWork
109 https://app.dimensions.ai/details/publication/pub.1031735024 schema:CreativeWork
110 https://doi.org/10.1016/0362-546x(79)90044-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047285406
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1017/s0308210500032121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054894894
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1080/03605300701382522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007127264
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1088/0951-7715/9/2/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110978
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1137/1.9781611971309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553028
119 rdf:type schema:CreativeWork
120 https://doi.org/10.4007/annals.2008.167.1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867068
121 rdf:type schema:CreativeWork
122 https://doi.org/10.4171/jems/173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317752
123 rdf:type schema:CreativeWork
124 https://doi.org/10.5802/aif.1377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137050
125 rdf:type schema:CreativeWork
126 https://doi.org/10.5802/aif.1924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137658
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
129 schema:name Department of Mathematics, Nanjing University, 210093, Nanjing, China
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
132 schema:name Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
133 rdf:type schema:Organization
134 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
135 schema:name Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...