Gauge Theories and Macdonald Polynomials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-11-07

AUTHORS

Abhijit Gadde, Leonardo Rastelli, Shlomo S. Razamat, Wenbin Yan

ABSTRACT

We study the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}=2}$$\end{document} four-dimensional superconformal index in various interesting limits, such that only states annihilated by more than one supercharge contribute. Extrapolating from the SU(2) generalized quivers, which have a Lagrangian description, we conjecture explicit formulae for all A-type quivers of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}$$\end{document}, which in general do not have one. We test our proposals against several expected dualities. The index can always be interpreted as a correlator in a two-dimensional topological theory, which we identify in each limit as a certain deformation of two-dimensional Yang-Mills theory. The structure constants of the topological algebra are diagonal in the basis of Macdonald polynomials of the holonomies. More... »

PAGES

147-193

References to SciGraph publications

  • 2007-06-06. An Index for 4 Dimensional Super Conformal Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-11-04. AN−1 conformal Toda field theory correlation functions from conformal 𝒩 = 2 SU(N) quiver gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2009-12-01. Argyres-Seiberg Duality and the Higgs Branch in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-01-31. Infinite coupling duals of N = 2 gauge theories and new rank 1 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-09. On the superconformal index of IR fixed points. A holographic check in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-08-18. BPS Quivers and Spectra of Complete N=2 Quantum Field Theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-11-13. Higgs Bundles, Gauge Theories and Quantum Groups in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2010-03-08. S-duality and 2d topological QFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-06-28. The Hilbert series of the one instanton moduli space in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-11-22. Tinkertoys for Gaiotto duality in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-10-30. The gravity duals of superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-05-28. SQCD: a geometric aperçu in JOURNAL OF HIGH ENERGY PHYSICS
  • 1999. Systems of Calogero-Moser Type in PARTICLES AND FIELDS
  • 2001. Integrable Many-Body Systems and Gauge Theories in INTEGRABLE HIERARCHIES AND MODERN PHYSICAL THEORIES
  • 2012-05-22. Localization of Gauge Theory on a Four-Sphere and Supersymmetric Wilson Loops in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-02-15. Tri-vertices and SU(2)’s in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-09-27. The omega deformation, branes, integrability and Liouville theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-12-03. Reducing the 4d index to the S3 partition function in JOURNAL OF HIGH ENERGY PHYSICS
  • 2013-12-18. Elliptic Hypergeometry of Supersymmetric Dualities II. Orthogonal Groups, Knots, and Vortices in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-06-24. Rigid supersymmetric theories in curved superspace in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-08-01. 3d partition function as overlap of wavefunctions in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-03-16. Elliptic Hypergeometry of Supersymmetric Dualities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2007-12-28. S-duality in N = 2 supersymmetric gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 1995-06. Two dimensional lattice gauge theory based on a quantum group in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2011-09-28. Relation between the 4d superconformal index and the S3 partition function in JOURNAL OF HIGH ENERGY PHYSICS
  • 1995-06. Integrable many-body systems in the field theories in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2009-09-09. Webs of five-branes and 𝒩 = 2 superconformal field theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2012-05-22. 3D-partition functions on the sphere: exact evaluation and mirror symmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-10-03. Counting gauge invariant operators in SQCD with classical gauge groups in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01-22. Liouville Correlation Functions from Four-Dimensional Gauge Theories in LETTERS IN MATHEMATICAL PHYSICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2010-01-29. Five-dimensional AGT conjecture and the deformed Virasoro algebra in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-08-24. The superconformal index of the E6 SCFT in JOURNAL OF HIGH ENERGY PHYSICS
  • 1991-10. On quantum gauge theories in two dimensions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-02. The Formulae of Kontsevich and Verlinde¶from the Perspective of the Drinfeld Double in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00220-012-1607-8

    DOI

    http://dx.doi.org/10.1007/s00220-012-1607-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049095812


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "California Institute of Technology, 91125, Pasadena, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA", 
                "California Institute of Technology, 91125, Pasadena, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gadde", 
            "givenName": "Abhijit", 
            "id": "sg:person.010754731147.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754731147.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.36425.36", 
              "name": [
                "C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rastelli", 
            "givenName": "Leonardo", 
            "id": "sg:person.012142064207.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142064207.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study, 08540, Princeton, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA", 
                "Institute for Advanced Study, 08540, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Razamat", 
            "givenName": "Shlomo S.", 
            "id": "sg:person.014120610455.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120610455.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.36425.36", 
              "name": [
                "C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Wenbin", 
            "id": "sg:person.015320424147.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320424147.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037453259", 
              "https://doi.org/10.1088/1126-6708/2008/10/012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02100009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003557553", 
              "https://doi.org/10.1007/bf02100009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018845201", 
              "https://doi.org/10.1007/bf02099153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0369-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022882223", 
              "https://doi.org/10.1007/s11005-010-0369-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep12(2012)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049084909", 
              "https://doi.org/10.1007/jhep12(2012)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-009-0938-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037774778", 
              "https://doi.org/10.1007/s00220-009-0938-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02065867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051994870", 
              "https://doi.org/10.1007/bf02065867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/12/088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051078287", 
              "https://doi.org/10.1088/1126-6708/2007/12/088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2010)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013246104", 
              "https://doi.org/10.1007/jhep11(2010)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11232-007-0020-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052702266", 
              "https://doi.org/10.1007/s11232-007-0020-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/11/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036176184", 
              "https://doi.org/10.1088/1126-6708/2009/11/002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/01/074", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041867495", 
              "https://doi.org/10.1088/1126-6708/2008/01/074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-011-1218-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038309539", 
              "https://doi.org/10.1007/s00220-011-1218-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2010)100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039820025", 
              "https://doi.org/10.1007/jhep06(2010)100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-0720-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027557259", 
              "https://doi.org/10.1007/978-94-010-0720-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2010)107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033814222", 
              "https://doi.org/10.1007/jhep08(2010)107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1789-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015933047", 
              "https://doi.org/10.1007/s00220-013-1789-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2011)133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023481793", 
              "https://doi.org/10.1007/jhep09(2011)133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep02(2011)069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048187336", 
              "https://doi.org/10.1007/jhep02(2011)069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2011)114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027455985", 
              "https://doi.org/10.1007/jhep06(2011)114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1485-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029100231", 
              "https://doi.org/10.1007/s00220-012-1485-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049735189", 
              "https://doi.org/10.1007/jhep01(2010)125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep05(2012)099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023665909", 
              "https://doi.org/10.1007/jhep05(2012)099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0369-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018689701", 
              "https://doi.org/10.1007/s00220-007-0369-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004902104", 
              "https://doi.org/10.1088/1126-6708/2009/09/052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-013-1861-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023671276", 
              "https://doi.org/10.1007/s00220-013-1861-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025314613", 
              "https://doi.org/10.1007/jhep03(2010)032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2011)003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007953755", 
              "https://doi.org/10.1007/jhep08(2011)003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200000355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010414222", 
              "https://doi.org/10.1007/s002200000355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1410-6_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044621884", 
              "https://doi.org/10.1007/978-1-4612-1410-6_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep09(2010)092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007800644", 
              "https://doi.org/10.1007/jhep09(2010)092"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2012)189", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010897089", 
              "https://doi.org/10.1007/jhep10(2012)189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-007-0258-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040519445", 
              "https://doi.org/10.1007/s00220-007-0258-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2011)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030328944", 
              "https://doi.org/10.1007/jhep03(2011)041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/05/099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012084421", 
              "https://doi.org/10.1088/1126-6708/2008/05/099"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-11-07", 
        "datePublishedReg": "2012-11-07", 
        "description": "We study the \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N}=2}$$\\end{document} four-dimensional superconformal index in various interesting limits, such that only states annihilated by more than one supercharge contribute. Extrapolating from the SU(2) generalized quivers, which have a Lagrangian description, we conjecture explicit formulae for all A-type quivers of class \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal S}$$\\end{document}, which in general do not have one. We test our proposals against several expected dualities. The index can always be interpreted as a correlator in a two-dimensional topological theory, which we identify in each limit as a certain deformation of two-dimensional Yang-Mills theory. The structure constants of the topological algebra are diagonal in the basis of Macdonald polynomials of the holonomies.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00220-012-1607-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3112065", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "319"
          }
        ], 
        "keywords": [
          "two-dimensional Yang", 
          "Macdonald polynomials", 
          "four-dimensional superconformal index", 
          "topological algebra", 
          "type quivers", 
          "topological theory", 
          "Mills theory", 
          "Lagrangian description", 
          "structure constants", 
          "gauge theory", 
          "interesting limits", 
          "explicit formula", 
          "certain deformation", 
          "superconformal index", 
          "quivers", 
          "polynomials", 
          "theory", 
          "algebra", 
          "holonomy", 
          "duality", 
          "correlator", 
          "formula", 
          "limit", 
          "class", 
          "Yang", 
          "only state", 
          "description", 
          "constants", 
          "state", 
          "deformation", 
          "proposal", 
          "basis", 
          "index", 
          "contributes"
        ], 
        "name": "Gauge Theories and Macdonald Polynomials", 
        "pagination": "147-193", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049095812"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00220-012-1607-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00220-012-1607-8", 
          "https://app.dimensions.ai/details/publication/pub.1049095812"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_563.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00220-012-1607-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00220-012-1607-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00220-012-1607-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00220-012-1607-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00220-012-1607-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      22 PREDICATES      94 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00220-012-1607-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nffa0c4611e0349638b9c56a1dcfde94e
    4 schema:citation sg:pub.10.1007/978-1-4612-1410-6_7
    5 sg:pub.10.1007/978-94-010-0720-7_3
    6 sg:pub.10.1007/bf02065867
    7 sg:pub.10.1007/bf02099153
    8 sg:pub.10.1007/bf02100009
    9 sg:pub.10.1007/jhep01(2010)125
    10 sg:pub.10.1007/jhep02(2011)069
    11 sg:pub.10.1007/jhep03(2010)032
    12 sg:pub.10.1007/jhep03(2011)041
    13 sg:pub.10.1007/jhep05(2012)099
    14 sg:pub.10.1007/jhep06(2010)100
    15 sg:pub.10.1007/jhep06(2011)114
    16 sg:pub.10.1007/jhep08(2010)107
    17 sg:pub.10.1007/jhep08(2011)003
    18 sg:pub.10.1007/jhep09(2010)092
    19 sg:pub.10.1007/jhep09(2011)133
    20 sg:pub.10.1007/jhep10(2012)189
    21 sg:pub.10.1007/jhep11(2010)099
    22 sg:pub.10.1007/jhep12(2012)003
    23 sg:pub.10.1007/s00220-007-0258-7
    24 sg:pub.10.1007/s00220-007-0369-1
    25 sg:pub.10.1007/s00220-009-0938-6
    26 sg:pub.10.1007/s00220-011-1218-9
    27 sg:pub.10.1007/s00220-012-1485-0
    28 sg:pub.10.1007/s00220-013-1789-8
    29 sg:pub.10.1007/s00220-013-1861-4
    30 sg:pub.10.1007/s002200000355
    31 sg:pub.10.1007/s11005-010-0369-5
    32 sg:pub.10.1007/s11232-007-0020-5
    33 sg:pub.10.1088/1126-6708/2007/12/088
    34 sg:pub.10.1088/1126-6708/2008/01/074
    35 sg:pub.10.1088/1126-6708/2008/05/099
    36 sg:pub.10.1088/1126-6708/2008/10/012
    37 sg:pub.10.1088/1126-6708/2009/09/052
    38 sg:pub.10.1088/1126-6708/2009/11/002
    39 schema:datePublished 2012-11-07
    40 schema:datePublishedReg 2012-11-07
    41 schema:description We study the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N}=2}$$\end{document} four-dimensional superconformal index in various interesting limits, such that only states annihilated by more than one supercharge contribute. Extrapolating from the SU(2) generalized quivers, which have a Lagrangian description, we conjecture explicit formulae for all A-type quivers of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal S}$$\end{document}, which in general do not have one. We test our proposals against several expected dualities. The index can always be interpreted as a correlator in a two-dimensional topological theory, which we identify in each limit as a certain deformation of two-dimensional Yang-Mills theory. The structure constants of the topological algebra are diagonal in the basis of Macdonald polynomials of the holonomies.
    42 schema:genre article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree true
    45 schema:isPartOf N02c293247517439988047d1733e4b288
    46 N8a3fbc22db2942e8ac8aa9dd3914a3e1
    47 sg:journal.1136216
    48 schema:keywords Lagrangian description
    49 Macdonald polynomials
    50 Mills theory
    51 Yang
    52 algebra
    53 basis
    54 certain deformation
    55 class
    56 constants
    57 contributes
    58 correlator
    59 deformation
    60 description
    61 duality
    62 explicit formula
    63 formula
    64 four-dimensional superconformal index
    65 gauge theory
    66 holonomy
    67 index
    68 interesting limits
    69 limit
    70 only state
    71 polynomials
    72 proposal
    73 quivers
    74 state
    75 structure constants
    76 superconformal index
    77 theory
    78 topological algebra
    79 topological theory
    80 two-dimensional Yang
    81 type quivers
    82 schema:name Gauge Theories and Macdonald Polynomials
    83 schema:pagination 147-193
    84 schema:productId N246b311ce960412895c608ef27289c5a
    85 Nc6847143075f44c6abe6e8c7c23a72c7
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049095812
    87 https://doi.org/10.1007/s00220-012-1607-8
    88 schema:sdDatePublished 2022-05-20T07:27
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N67439b834abf4e80a1b9889d300817b4
    91 schema:url https://doi.org/10.1007/s00220-012-1607-8
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N02c293247517439988047d1733e4b288 schema:issueNumber 1
    96 rdf:type schema:PublicationIssue
    97 N246b311ce960412895c608ef27289c5a schema:name doi
    98 schema:value 10.1007/s00220-012-1607-8
    99 rdf:type schema:PropertyValue
    100 N29a733bfa5314fe68957c74a53c84346 rdf:first sg:person.012142064207.41
    101 rdf:rest N352f162df6b44fc1a00ba0eb296b677d
    102 N352f162df6b44fc1a00ba0eb296b677d rdf:first sg:person.014120610455.22
    103 rdf:rest N3cd079ab8aa84e88892529db9e09c1d2
    104 N3cd079ab8aa84e88892529db9e09c1d2 rdf:first sg:person.015320424147.54
    105 rdf:rest rdf:nil
    106 N67439b834abf4e80a1b9889d300817b4 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N8a3fbc22db2942e8ac8aa9dd3914a3e1 schema:volumeNumber 319
    109 rdf:type schema:PublicationVolume
    110 Nc6847143075f44c6abe6e8c7c23a72c7 schema:name dimensions_id
    111 schema:value pub.1049095812
    112 rdf:type schema:PropertyValue
    113 Nffa0c4611e0349638b9c56a1dcfde94e rdf:first sg:person.010754731147.83
    114 rdf:rest N29a733bfa5314fe68957c74a53c84346
    115 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Mathematical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Pure Mathematics
    120 rdf:type schema:DefinedTerm
    121 sg:grant.3112065 http://pending.schema.org/fundedItem sg:pub.10.1007/s00220-012-1607-8
    122 rdf:type schema:MonetaryGrant
    123 sg:journal.1136216 schema:issn 0010-3616
    124 1432-0916
    125 schema:name Communications in Mathematical Physics
    126 schema:publisher Springer Nature
    127 rdf:type schema:Periodical
    128 sg:person.010754731147.83 schema:affiliation grid-institutes:grid.20861.3d
    129 schema:familyName Gadde
    130 schema:givenName Abhijit
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010754731147.83
    132 rdf:type schema:Person
    133 sg:person.012142064207.41 schema:affiliation grid-institutes:grid.36425.36
    134 schema:familyName Rastelli
    135 schema:givenName Leonardo
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142064207.41
    137 rdf:type schema:Person
    138 sg:person.014120610455.22 schema:affiliation grid-institutes:grid.78989.37
    139 schema:familyName Razamat
    140 schema:givenName Shlomo S.
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014120610455.22
    142 rdf:type schema:Person
    143 sg:person.015320424147.54 schema:affiliation grid-institutes:grid.36425.36
    144 schema:familyName Yan
    145 schema:givenName Wenbin
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320424147.54
    147 rdf:type schema:Person
    148 sg:pub.10.1007/978-1-4612-1410-6_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044621884
    149 https://doi.org/10.1007/978-1-4612-1410-6_7
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/978-94-010-0720-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027557259
    152 https://doi.org/10.1007/978-94-010-0720-7_3
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/bf02065867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051994870
    155 https://doi.org/10.1007/bf02065867
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/bf02099153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018845201
    158 https://doi.org/10.1007/bf02099153
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/bf02100009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003557553
    161 https://doi.org/10.1007/bf02100009
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/jhep01(2010)125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049735189
    164 https://doi.org/10.1007/jhep01(2010)125
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/jhep02(2011)069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048187336
    167 https://doi.org/10.1007/jhep02(2011)069
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/jhep03(2010)032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025314613
    170 https://doi.org/10.1007/jhep03(2010)032
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/jhep03(2011)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030328944
    173 https://doi.org/10.1007/jhep03(2011)041
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/jhep05(2012)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023665909
    176 https://doi.org/10.1007/jhep05(2012)099
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/jhep06(2010)100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039820025
    179 https://doi.org/10.1007/jhep06(2010)100
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/jhep06(2011)114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027455985
    182 https://doi.org/10.1007/jhep06(2011)114
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/jhep08(2010)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033814222
    185 https://doi.org/10.1007/jhep08(2010)107
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/jhep08(2011)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007953755
    188 https://doi.org/10.1007/jhep08(2011)003
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/jhep09(2010)092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007800644
    191 https://doi.org/10.1007/jhep09(2010)092
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/jhep09(2011)133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023481793
    194 https://doi.org/10.1007/jhep09(2011)133
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/jhep10(2012)189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010897089
    197 https://doi.org/10.1007/jhep10(2012)189
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1007/jhep11(2010)099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013246104
    200 https://doi.org/10.1007/jhep11(2010)099
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1007/jhep12(2012)003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049084909
    203 https://doi.org/10.1007/jhep12(2012)003
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1007/s00220-007-0258-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040519445
    206 https://doi.org/10.1007/s00220-007-0258-7
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1007/s00220-007-0369-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018689701
    209 https://doi.org/10.1007/s00220-007-0369-1
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/s00220-009-0938-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774778
    212 https://doi.org/10.1007/s00220-009-0938-6
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s00220-011-1218-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038309539
    215 https://doi.org/10.1007/s00220-011-1218-9
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s00220-012-1485-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100231
    218 https://doi.org/10.1007/s00220-012-1485-0
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s00220-013-1789-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015933047
    221 https://doi.org/10.1007/s00220-013-1789-8
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s00220-013-1861-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023671276
    224 https://doi.org/10.1007/s00220-013-1861-4
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s002200000355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010414222
    227 https://doi.org/10.1007/s002200000355
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s11005-010-0369-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022882223
    230 https://doi.org/10.1007/s11005-010-0369-5
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1007/s11232-007-0020-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052702266
    233 https://doi.org/10.1007/s11232-007-0020-5
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1088/1126-6708/2007/12/088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051078287
    236 https://doi.org/10.1088/1126-6708/2007/12/088
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1088/1126-6708/2008/01/074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041867495
    239 https://doi.org/10.1088/1126-6708/2008/01/074
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1088/1126-6708/2008/05/099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012084421
    242 https://doi.org/10.1088/1126-6708/2008/05/099
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1088/1126-6708/2008/10/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037453259
    245 https://doi.org/10.1088/1126-6708/2008/10/012
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1088/1126-6708/2009/09/052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004902104
    248 https://doi.org/10.1088/1126-6708/2009/09/052
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1088/1126-6708/2009/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036176184
    251 https://doi.org/10.1088/1126-6708/2009/11/002
    252 rdf:type schema:CreativeWork
    253 grid-institutes:grid.20861.3d schema:alternateName California Institute of Technology, 91125, Pasadena, CA, USA
    254 schema:name C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA
    255 California Institute of Technology, 91125, Pasadena, CA, USA
    256 rdf:type schema:Organization
    257 grid-institutes:grid.36425.36 schema:alternateName C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA
    258 schema:name C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA
    259 rdf:type schema:Organization
    260 grid-institutes:grid.78989.37 schema:alternateName Institute for Advanced Study, 08540, Princeton, NJ, USA
    261 schema:name C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, 11794-3840, Stony Brook, NY, USA
    262 Institute for Advanced Study, 08540, Princeton, NJ, USA
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...